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Outline of the talk and the definition of core partitions

Outline

Introduction to Hecke algebras (partitions and crystals)

cores and the Mullineaux map for Hecke algebras of type A
the modular branching rule (in the original sense)
the Dipper-James-Murphy conjecture for Hecke algebras of type B
cores and Erdmann-Nakano’s theorem for Hecke algebras of type A

Towards generalization to other affine Lie types

finite quiver Hecke algebras
cores as extremal weights of the basic module
Erdmann-Nakano type theorems
always special biserial algebras for tame type (?)
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Outline of the talk and the definition of core partitions

Core partitions

Everybody knows what a partition is. We visualize a partition as a Young
diagram in British style.

We choose a node in the diagram.

×

Then, we may consider the hook which the node defines. If there is no
hook of length e, we say that the partition is an e-core.
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Introduction to Hecke algebras

The symmetric group and the associated Hecke algebras

Core partitions label block algebras of the group algebra of the symmetric
group and the associated Hecke algebras. Let us recall what they are.

We know the presentation of the symmetric group Sn by elementary
transpositions si = (i , i +1), for i = 1, . . . , n− 1, and the defining relations

s2i = 1, si sj = sjsi (if j ̸= i ± 1), si sjsi = sjsi sj (if j = i ± 1).

Let F be a field of positive characteristic ℓ. The relations also give the
defining relations of the group algebra FSn. The group algebra belongs to
a one-parameter family of algebras Hn(q) (q ∈ F×), defined by

(si − q)(si + 1) = 0, si sj = sjsi (if j ̸= i ± 1), si sjsi = sjsi sj (if j = i ± 1).

Hn(q) are called Hecke algebras of type A. We often start with a field of
characteristic 0 and q ̸= 1 an ℓth root of unity. Then we reduce it modulo
ℓ to obtain FSn. Thus, it suffices to consider Hn(q) only.
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Introduction to Hecke algebras

Block algebras (general definition)

If A is a finite dimensional algebra, we may decompose it into a direct sum

A = A1 ⊕ · · · ⊕ As

of two sided ideals Ai . Write 1 =
∑

ei along the decomposition. Then, we
have eiej = δijei , and aei = eia, for a ∈ A. If Ai is no more decomposable
into a direct sum of two sided ideals, we call Ai a block algebra of A. We
view Ai as an algebra with unit ei .

Example 2.1

Let A = FS3 and suppose that 2 and 3 are invertible in F . We define

e1 =
1

6

∑
σ∈S3

σ, e2 =
1

6

∑
σ∈S3

sgn(σ)σ, e3 = 1− e1 − e2.

Then, Ae1 ≃ Mat(1,F ), Ae2 ≃ Mat(1,F ) and Ae3 ≃ Mat(2,F ) are block
algebras. Thus, A = A1 ⊕ A2 ⊕ A3 if we set Ai = Aei = eiA.
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Introduction to Hecke algebras

Block algebras and e-cores for A = FS3

Let us continue the previous example. Observe that

The projection A = FS3 → A1 = Fe1, where

e1 =
1

6

∑
σ∈S3

σ

gives the trivial representation of S3, as ge1 = e1, for g ∈ S3.
We label the trivial representation with the partition (3).

The projection A = FS3 → A2 = Fe2, where

e2 =
1

6

∑
σ∈S3

sgn(σ)σ

gives the sign representation of S3, as ge2 = sgn(g)e2, for g ∈ S3.
We label the sign representation with the partition (13).

The remaining A = FS3 → A3 gives the representation of S3
which we label with the partition (2, 1).
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Introduction to Hecke algebras

Block algebras and e-cores for A = FS3 (cont’d)

If char(F ) = 2, we may not define e1 and e2 indivisually, but we may
still well-define its sum e1 + e2. Thus, A has two block algebras.

e1 + e2 =
1

3
(1 + s1s2 + s2s1), e3 =

1

3
(2− s1s2 − s2s1).

How to merge idempotents may be controlled by 2-cores: observe
that we may remove a 2-hook from (3) and (13) to share the 2-core
(1), while (2, 1) is a 2-core.

× ×
×
×

If char(F ) = 3, we may not define any of e1, e2, e3, e1 + e2, e1 + e3
and e2 + e3. Thus, A has the unique block algebra, namely A itself.
Now, observe that we may remove a 3-hook from all of (3), (2, 1) and
(13) to obtain the common 3-core ∅.
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Introduction to Hecke algebras

Labeling block algebras with e-cores

The e-core of a partition is the partition which is obtained by successive
removal of e-hooks.

Next is the precise statement for the labeling.

Proposition 2.2

Suppose that e is a prime. For each partition λ ⊢ n, we have the
corresponding irreducible character χλ of Sn. We define

eλ =
χλ(1)

n!

∑
σ∈Sn

χλ(σ
−1)σ.

Let κ be an e-core, and Pκ the set of all partitions which have κ as their
common e-core. Then, eκ =

∑
λ∈Pκ

eλ is well-defined, and Bκ = Aeκ is a
block algebra of FSn. Any block algebra is obtained in this way.

We may define block algebras Bκ of Hn(q) in the similar manner, but for
arbitrary e ∈ N.

Susumu Ariki (Osaka University) Hecke algebras KAIST, Daejeon, July10, 2015 8 / 33



Introduction to Hecke algebras

Labeling block algebras with e-cores

The e-core of a partition is the partition which is obtained by successive
removal of e-hooks. Next is the precise statement for the labeling.

Proposition 2.2

Suppose that e is a prime. For each partition λ ⊢ n, we have the
corresponding irreducible character χλ of Sn. We define

eλ =
χλ(1)

n!

∑
σ∈Sn

χλ(σ
−1)σ.

Let κ be an e-core, and Pκ the set of all partitions which have κ as their
common e-core. Then, eκ =

∑
λ∈Pκ

eλ is well-defined, and Bκ = Aeκ is a
block algebra of FSn. Any block algebra is obtained in this way.

We may define block algebras Bκ of Hn(q) in the similar manner, but for
arbitrary e ∈ N.
Susumu Ariki (Osaka University) Hecke algebras KAIST, Daejeon, July10, 2015 8 / 33



Introduction to Hecke algebras

Specht modules for Hn(q)

Let λ be a partition of n, Sλ the corresponding Young subgroup, which is
generated by si = (i , i + 1) with i ̸= λ1, λ1 + λ2, . . . . Define

mλ =
∑
w∈Sλ

w .

Then, multiplying mλ with certain distinguished right and left coset
representatives on both sides, we obtain the Murphy basis

{mst | λ ⊢ n, s, t ∈ ST(λ)},

for FSn. The same construction gives the Murphy basis for Hn(q).

It gives a filtration of Hn(q) by two-sided ideals such that each of the
successive quotients is isomorphic to Sλ ⊗ tSλ, for some module Sλ,
and its “transpose”tSλ. The modules Sλ are called Specht modules.
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Introduction to Hecke algebras

Labeling irreducible modules with restricted partitions

Dipper-James-Murphy’s theory of Specht modules tells us classification of
irreducible Hn(q)-modules by taking their socle or cosocle.

Definition 2.3

A partition λ = (λ1, λ2, . . . ) ⊢ n is e-restricted, if λi − λi+1 ≤ e − 1, for
all i .

Theorem 2.4

Let e = min{k | 1 + q + · · ·+ qk−1 = 0}. If λ is e-restricted, then the
Hn(q)-module Sλ has unique irreducible quotient. We denote it by Dλ,
namely Dλ = cosoc(Sλ). Then, the set

{Dλ | λ is e-restricted.}

is a complete set of isomorphism classes of irreducible Hn(q)-modules.
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Introduction to Hecke algebras

What is our goal ?

Suppose that char(F ) does not divide n!. Then, there are various
combinatorial results on the representation theory of FSn.

Our aim to generalize the results and expand the realm of algebraic
combinatorics. It has turned out that Kashiwara crystal is natural
language for the purpose. For example, let us consider the rule

Sλ ⊗ sgn ≃ Sλ′
,

where λ′ is the conjugate partition of λ.

Remark 2.5

Let ρλ : Hn(q) → End(Sλ) be the action. Considering the automorphism
of Hn(q) defined by θ : si 7→ −qs−1

i , we may interpret Sλ ⊗ sgn as the
module Sλ with the new action given by ρλ ◦ θ. Moreover, we have the
same rule for Hn(q) as above for generic q.
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Introduction to Hecke algebras

The Mullineaux map

As FSn is Hn(q) with q = 1, let us consider Hn(q) from the beginning.
Then, the condition that char(F ) does not divide n! is Pn(q) ̸= 0, for

Pn(t) = (1 + t)(1 + t + t2) · · · (1 + t + · · ·+ tn−1).

In this case, Dλ = Sλ, so the rule is Dλ ⊗ sgn ≃ Dλ′
. We ask:

Is there natural generalization of the rule Dλ ⊗ sgn ≃ Dλ′
to the

case when Pn(q) = 0 ?

As Dλ ⊗ sgn irreducible, we may write

Dλ ⊗ sgn ≃ Dm(λ).

Mullineaux conjectured a rule to compute m(λ) from λ in 1979, and
Kleshchev proved the rule in 1996. However, conjugate partitions do not
appear in their description of the map λ 7→ m(λ).
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Introduction to Hecke algebras

Language of Kashiwara crystals

Let us briefly recall the notion of semi-normal Kashiwara crystal.

Let g be a Kac-Moody Lie algebra. (B,wt, ẽi , f̃i ) is a semi-normal g-crystal
if B is a set, wt : B → P is a map to the weight lattice P of g, ẽi and f̃i
are maps B → B ⊔ {0}, such that if we define

ϵi (b) = max{k ≥ 0 | ẽki b ∈ B}, φi (b) = max{k ≥ 0 | f̃ ki b ∈ B},

then the following hold.

(1) ϵi , φi : B → Z and φi (b) = ϵi (b) + ⟨wt(b), α∨
i ⟩.

(2) If ẽib ̸= 0 then wt(ẽib) = wt(b) + αi , ϵi (ẽib) = ϵi (b)− 1,
φi (ẽib) = φi (b) + 1.

(3) If f̃ib ̸= 0 then wt(f̃ib) = wt(b)− αi , ϵi (f̃ib) = ϵi (b) + 1,
φi (f̃ib) = φi (b)− 1.

(4) For b, b′ ∈ B, f̃ib = b′ if and only if ẽib
′ = b.

Susumu Ariki (Osaka University) Hecke algebras KAIST, Daejeon, July10, 2015 13 / 33



Introduction to Hecke algebras

Language of Kashiwara crystals

Let us briefly recall the notion of semi-normal Kashiwara crystal.

Let g be a Kac-Moody Lie algebra. (B,wt, ẽi , f̃i ) is a semi-normal g-crystal
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are maps B → B ⊔ {0}, such that

if we define

ϵi (b) = max{k ≥ 0 | ẽki b ∈ B}, φi (b) = max{k ≥ 0 | f̃ ki b ∈ B},

then the following hold.

(1) ϵi , φi : B → Z and φi (b) = ϵi (b) + ⟨wt(b), α∨
i ⟩.

(2) If ẽib ̸= 0 then wt(ẽib) = wt(b) + αi , ϵi (ẽib) = ϵi (b)− 1,
φi (ẽib) = φi (b) + 1.

(3) If f̃ib ̸= 0 then wt(f̃ib) = wt(b)− αi , ϵi (f̃ib) = ϵi (b) + 1,
φi (f̃ib) = φi (b)− 1.

(4) For b, b′ ∈ B, f̃ib = b′ if and only if ẽib
′ = b.
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Introduction to Hecke algebras

Misra-Miwa model

Let g be of affine type A
(1)
ℓ . Then, we choose the weight lattice as

P = ZΛ0 ⊕ · · · ⊕ ZΛℓ ⊕ Zδ,

where Λi are the fundamental weights and δ is the null root.

Theorem 2.6

Let e = ℓ+ 1. Then, B(Λ0) is realized on the set of e-restricted partitions.
The weight of an e-restricted partition λ is

wt(λ) = Λ0 −
∑

i∈Z/eZ

♯{(j , k) ∈ λ | −j + k ≡ i mod e.}αi ,

and the map ẽi and f̃i are defined by the signature rule.
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Introduction to Hecke algebras

Littelmann path model

Another realization of A
(1)
e−1-crystal B(Λ0) is given by a version of the

Littelmann path model. We explain Kashiwara’s treatment of the path
model in our setting.

Definition 2.7

Let B and B ′ be crystals. We call a map ψ : B → B ′ crystal morphism of
amplitude h if

(i) wt(ψ(b)) = hwt(b), ϵi (ψ(b)) = hϵi (b) and φi (ψ(b)) = hφi (b),

(ii) ψ(ẽib) = ẽhi ψ(b) and ψ(f̃ib) = f̃ hi ψ(b), for all b ∈ B.

Proposition 2.8

Let Λ be dominant integral. Then there exists a unique crystal morphism
Sh : B(Λ) → B(hΛ) of amplitude h, for all h ∈ N.
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Introduction to Hecke algebras

Littelmann path model (cont’d)

Let us start with the Misra-Miwa model and we identify B(Λ0) with the
set of e-restricted partitions. Let λ ∈ B(Λ0) be an e-restricted partition.

Using the canonical embedding B(hΛ0) ⊂ B(Λ0)
⊗h, we can write

Sh(λ) = λ(1) ⊗ · · · ⊗ λ(h).

We denote it by Sh(λ)
1/h = λ(1)

⊗1/h ⊗ · · · ⊗ λ(h)
⊗1/h

, and replace
(µ⊗1/h)⊗k with µ⊗k/h, for any µ that appears in λ(1), . . . , λ(h).
In this way, we may write

Sh(λ)
1/h = ν1

⊗a1 ⊗ ν2
⊗(a2−a1) ⊗ · · · ⊗ νs

⊗(1−as−1),

where a0 = 0 < a1 < · · · < as = 1 are rational integers and ν1, . . . , νs are
pairwise distinct e-restricted partitions.
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Introduction to Hecke algebras

Littelmann path model (cont’d)

Theorem 2.9

If h is sufficiently divisible then

(1) νj are e-cores.

(2) aj and νj all stabilize.

Remark 2.10

Given sufficiently divisible h, we write

Sh(λ)
1/h = ν1

⊗a1 ⊗ ν2
⊗(a2−a1) ⊗ · · · ⊗ νs

⊗(1−as−1)

as above, and define πλ to be the path (wt(ν1), . . . ,wt(νs); a0, . . . , as).
Then πλ is a LS-path. Let B(Λ0) be the Littelmann path model , i.e. the
crystal of those LS paths. Then, the map B(Λ0) → B(Λ0) defined by
λ 7→ πλ is an isomorphism of crystals.
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Introduction to Hecke algebras

Kashiwara crystal for the Mullineaux map

We have explained that the Kashiwara crystal B(Λ0) may be realized on
two combinatorial models.

the set of e-restricted partitions.

the set of (ν1, . . . , νs ; a0, . . . , as) where νj are e-cores.

Now, I can explain my description of the Mullineaux map, which naturally
generalizes the map λ 7→ λ′:

Theorem 2.11

The Mullineaux map is given by conjugating all the e-cores νj :

(ν1, . . . , νs ; a0, . . . , as) 7→ (ν ′1, . . . , ν
′
s ; a0, . . . , as).

If Dλ = Sλ, we have s = 1 and the rule is reduced to the original one.
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Introduction to Hecke algebras

Modular branching rule as another example

We continue identifying B(Λ0) with the set of e-restricted partitions. As
Leclerc pointed out, the Brundan-Kleshchev modular branching rule may
be stated as

Soc(Res
Hn(q)
Hn−1(q)

Dλ) =
⊕

i∈Z/eZ

D ẽiλ.

Remark 2.12

We introduced the notion of cyclotomic quotient in early 90’s. Further, we
proved modular branching rules for cyclotomic Hecke algebras and the
affine Hecke algebra of type A. The rules have the common form that
Soc(ResDλ) is the direct sum of D ẽiλ’s. Then, with Jacon and Lecouvey,
we showed that the two modular branching rules are compatible with the
embedding of crystals B(Λ) ↪→ B(∞)⊗ TΛ.
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Introduction to Hecke algebras

Dipper-James-Murphy conjecture

I give yet another example where crystal theory plays a role. Let Hn(q,Q)
be the Hecke algebras of type Bn. It is the algebra defined by generators
s0, s1, . . . , sn−1 and the relations

(s0 − Q)(s0 + 1) = 0, s0s1s0s1 = s1s0s1s0, s0si = si s0 (i ≥ 2)

and the same relations among s1, . . . , sn−1 as Hn(q).

To explain the Dipper-James-Murphy conjecture, we reconsider the
condition that a partition λ is e-restricted, in different way. Let t be a
standard tableau of shape λ and assume that 1, . . . , n are located on
(i1, j1), . . . , (in, jn), respectively. Then, we call

(−i1 + j1, . . . ,−in + jn) ∈ (Z/eZ)n

the weight of t.
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Introduction to Hecke algebras

Dipper-James-Murphy conjecture (cont’d)

Then, we observe that λ is e-restricted if and only if there is a standard
tableau t of shape λ such that the weight of t does not coincide with any
weight of tableaux of shape µ ◁ λ.

To see this, we use the ladder decomposition of a partition. Each ladder
consists of (i , j), (i − 1, j + e − 1), (i − 2, j + 2e − 2), . . . .

Example 1

The following is an example for e = 4. One of the weights which does not
appear as weights of tableaux of shape µ ◁ λ = (4, 2) is (0, 1, 2, 3, 3, 0).

jjjjjjjjjjj

· ·
·

·
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Introduction to Hecke algebras

Dipper-James-Murphy conjecture (cont’d)

Dipper, James and Murphy considered the same condition for bipartitions
λ that there is a standard bitableau of shape λ such that its weight does
not coincide with any weight of bitableaux of shape µ ◁ λ, and call such
bipartitions (Q, e)-restricted bipartitions.

Then, they conjectured in 1995 as follows.

Suppose that −Q ∈ qZ. Then,

{Dλ | λ is (Q, e)-restricted.}

is a complete set of isomorphism classes of irreducible
Hn(q,Q)-modules.

Remark 2.13

We published a proof of the conjecture in 2007. We used combinatorics of
Fock spaces, Demazure crystals etc. in the proof.
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Introduction to Hecke algebras

e-cores and Erdmann-Nakano’s theorem

Now, we return to e-cores. Recall that block algebras of Hn(q) are labeled
by e-cores κ. Erdmann and Nakano showed that k = (n − |κ|)/e controls
its representation type. As you know, a finite dimensional algebra has

finite representation type if it is not semisimple but has finitely many
isomorphism classes of indecomposable modules.

tame representation type if for each positive integer d , there are
finitely many one parameter families to cover all the indecomposable
modules of dimension d , up to isomorphisms.

wild representation type if there is a functor which embeds the
category of indecomposable modules over the free algebra in two
variables to the module category of the algebra. In other words, the
functor respects indecomposability and isomorphism classes.

It tells us when we may expect a kind of Jordan normal form.
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Towards generalization to other affine Lie types

Finite quiver Hecke algebras

Now, it is time for departing affine type A
(1)
ℓ . Khovanov and Lauda

categorified the negative half of the quantum group by using affine quiver
Hecke algebras, or Khovanov-Lauda-Rouquier algebras, in their paper

“A diagrammatic approach to categorification of quantum groups I”,

and proposed the study of the cyclotomic quotient of the affine quiver
Hecke algebras.

Let me quote from §3.4, whose title is, a conjecture on
categorification of irreducible representations.

The ring R(ν;λ) inherits a grading from R(ν). These quotient
rings should be the analogues of the Ariki-Koike cyclotomic
Hecke algebras in our framework.

The conjecture itself was proved by Kang and Kashiwara. Let β be a
non-negative linear combination of simple roots αi . We denote their
R(β; Λ0) by RΛ0(β) and call them finite quiver Hecke algebras.
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Towards generalization to other affine Lie types

Categorification picture

We consider categorification of the basic module V (Λ0) over an affine
Kac-Moody Lie algebra. That is, we have⊕

β≥0

K0(R
Λ0(β)-mod)⊗Z C ≃ V (Λ0),

where β ≥ 0 means β ∈ Z≥0α0 ⊕ · · · ⊕ Z≥0αℓ. This generalizes the
Frobenius characteristic map, which is for affine type A∞.

Remark 3.1

The direct sum RΛ0(n) of RΛ0(β) over ht(β) = n is an analogue of Hn(q).

In this picture, the Mullineaux map is to describe the effect of an Dynkin
automorphism on the labelling of irreducible RΛ(n)-modules in the case
when Λ is fixed under the Dynkin automorphism, etc.
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Towards generalization to other affine Lie types

Lemma 12.6 in Victor Kac’s book

If B is a normal g-crystal, the Weyl group W acts on B as follows.

sib =

{
f̃
⟨α∨

i ,wt(b)⟩
i b, (if ⟨α∨

i ,wt(b)⟩ ≥ 0.)

ẽ
−⟨α∨

i ,wt(b)⟩
i b, (if ⟨α∨

i ,wt(b)⟩ ≤ 0.)

In affine type A
(1)
e−1, B(Λ0) is realized on the set of e-restricted partitions.

Then, in the categorification picture, we have that e-cores are in bijection
with extremal weights of B(Λ0) and they form the W -orbit through the
highest weight element.

It allows us to generalize the notion of e-cores. Let g be of type

A
(1)
ℓ ,D

(1)
ℓ≥4,E

(1)
6,7,8,A

(2)
2ℓ ,A

(2)
2ℓ−1≥5,D

(2)
ℓ+1≥3,E

(2)
6 ,D

(3)
4 .

Then, the set of maximal weights {κ | B(Λ0)κ ̸= ∅, B(Λ0)κ+δ = ∅.}
coincides with the W -orbit through the highest weight element.
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Then, the set of maximal weights {κ | B(Λ0)κ ̸= ∅, B(Λ0)κ+δ = ∅.}
coincides with the W -orbit through the highest weight element.
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Lemma 12.6 in Victor Kac’s book
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sib =

{
f̃
⟨α∨

i ,wt(b)⟩
i b, (if ⟨α∨

i ,wt(b)⟩ ≥ 0.)

ẽ
−⟨α∨

i ,wt(b)⟩
i b, (if ⟨α∨

i ,wt(b)⟩ ≤ 0.)
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Towards generalization to other affine Lie types

Generalizing e-cores

We have noticed that if we realize B(Λ0) on the set of e-restricted
partitions, the set of e-cores coincides with the set of maximal weights
{κ | B(Λ0)κ ̸= ∅,B(Λ0)κ+δ = ∅.}. In this case, block algebras of Hn(q)
are RΛ0(β)’s. Thus, we may not only generalize cores but the previous
story to other affine types, by using the finite quiver Hecke algebras.

Definition 3.2

Let β be a non-negative linear combination of simple roots αi . Then, we
label the algebra RΛ0(β) with the maximal weight κ determined by

Λ0 − β ∈ κ− Z≥0δ.

We call κ the core weight of β.

We will see that k ≥ 0 given by Λ0 − β = κ− kδ controls the
representation type of RΛ0(β) labeled by κ.
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Towards generalization to other affine Lie types

The core weights and the Erdmann-Nakano theorem

Recall that representation type tells us when we may study algebras and
their modules in detail.

Indeed, we expect:

If they have finite representation type, then we may describe them as
Brauer tree algebras.

If they have tame representation type, then we may describe them as
symmetric special biserial algebras, i.e. Brauer graph algebras.

Thus, in past several years, we studied representation type for other affine
types. This part is joint work with Euiyong Park. In the work, we studied

affine types with two double arrows on both ends, as well as A
(1)
ℓ .

A
(2)
2ℓ : ◦ ⇐ · · · ⇐ ◦ D

(2)
ℓ+1 : ◦ ⇐ · · · ⇒ ◦

C
(1)
ℓ : ◦ ⇒ · · · ⇐ ◦
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Towards generalization to other affine Lie types

Special biserial algebras -definition-

Now we recall the definition of special biserial algebra. It is a combinatorial
notion.

A finite dimensional algebra is a special biserial algebra if the
quiver and the relations of its basic algebra satisfy the following.

(a1) For each vertex i , the number of incoming arrows is at most 2.

(a2) For each vertex i , the number of outgoing arrows is at most 2.

(b1) For each arrow α, there is at most one arrow β such that αβ ̸= 0.

(b1) For each arrow α, there is at most one arrow β such that βα ̸= 0.

For special biserial algebras, classification of indecomposable modules is
known. They are given by string modules and band modules, where strings
and bands are certain walks on the double of the quiver.

Remark 3.3

We may also determine the Auslander-Reiten quiver.
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Towards generalization to other affine Lie types

Special biserial algebras -example-

Let me give an example. We start with an algebra, and general recipe is
that we manage to determine the radical series of indecomposable
projective modules. Then, we may write the quiver and the relations.

Example 2

Suppose that we have obtained the following quiver and the defining
relations βα = 0, γαβ = αβγ, γ2 = 0.

◦ ◦γ <<
α

))

β

ii

Each vertex has at most two incoming and outgoing arrows. If we consider
a walk of length 2 which starts or ends with α, we know that it is unique.
The same holds for β or γ. Thus, the algebra is special biserial.
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Towards generalization to other affine Lie types

Erdmann-Nakano type theorems

Let me give an example of Erdmann-Nakano type theorems.

Theorem 3.4

Let RΛ0(β) be of affine type D
(2)
ℓ+1 (ℓ ≥ 2), and κ its core weight. Define

k ∈ Z≥0 by Λ0 − β = κ− kδ. Then, RΛ0(β) is

1 simple if k = 0,

2 of finite representation type but not semisimple if k = 1,

3 of tame representation type if k = 2,

4 of wild representation type if k ≥ 3.

Derived equivalence plays a key role in the proof, and Rouquier’s derived
equivalence, which categorifies the Weyl group action, is decomposed into
composition of those derived equivalences coming from mutation of Brauer
graph if k = 2. If k = 0, 1 the algebras are much simpler.
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Towards generalization to other affine Lie types

Summary

We have explained that non-semisimple representation theory of
Hecke algebras and their generalizations may be part of algebraic
combinatorics, and Kashiwara crystal serves well as a language for
statements and proofs.

Examples include, the Mullineaux map in a version of the Littelmann
path model, modular branching rules and its compatibility with
embedding of crystals, the Dipper-James-Murphy conjecture on the
classification of irreducible Hn(q,Q)-modules, etc.

The notion of e-cores plays important roles when we label block
algebras and tell how complex the algebras are by the representation
type. Further, it may be generalized naturally in Lie theoretic terms,
and the representation type may be judged by Erdmann-Nakano type
theorems that use generalization of e-cores.

When the representation type is tame, the algebra should be a Brauer
graph algebra, an object with combinatorial flavor.
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Towards generalization to other affine Lie types

Thank you for your attention.
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