#### Manuel Kauers and Rika Yatchak

Institute for Algebra Johannes Kepler Universität

July 9, 2015





We consider 2D *lattice walks* in the positive quadrant  $(\mathbb{Z}_{\geq 0})^2$  with *small steps s*  $\in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$  and multiplicities.

We consider 2D *lattice walks* in the positive quadrant  $(\mathbb{Z}_{\geq 0})^2$  with *small steps s*  $\in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$  and multiplicities. A *model* is a multiset of admissible steps *s*.

Introduction

We consider 2D *lattice walks* in the positive quadrant  $(\mathbb{Z}_{\geq 0})^2$  with *small steps s*  $\in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$  and multiplicities. A *model* is a multiset of admissible steps *s*.



Introduction

We consider 2D *lattice walks* in the positive quadrant  $(\mathbb{Z}_{\geq 0})^2$  with *small steps s*  $\in \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$  and multiplicities. A *model* is a multiset of admissible steps *s*.

Example  $\begin{array}{c} 1 \\ 2 \\ \mathcal{G} \\ \mathcal{G} \\ = \{(1,0), (1,0), (1,1), (-1,0), (-1,-1), (-1,-1)\} \end{array}$ 

Main question: given a model M, what is the nature of its generating function

$$F_{\mathcal{M}}(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} f_{i,j,n} x^{i} y^{j} t^{n}$$

Is it algebraic? D-finite? Something else?

Introduction

# A bit of history

# A bit of history

# Fayolle, lasnogorodski, Malyshev: *Random Walks in the Quarter-Plane*

#### A bit of history

Fayolle, Iasnogorodski, Malyshev: *Random Walks in the Quarter-Plane* : aka the "Yellow book"

Introduction

# A bit of history

Fayolle, Iasnogorodski, Malyshev: *Random Walks in the Quarter-Plane* : aka the "Yellow book" Bousquet-Mélou and Mishna: *Walks with Small Steps in the Quarter Plane* 

Introduction

#### Recall:

#### A power series $F(x, y, t) \in \mathbb{Q}[[x, y, t]]$ is:

Introduction

#### Recall:

A power series  $F(x, y, t) \in \mathbb{Q}[[x, y, t]]$  is:

• algebraic over  $\mathbb{Q}(x, y, t)$  if there are polynomials  $p_0, \ldots, p_n \in \mathbb{Q}[x, y, t]$  such that there is a nontrivial relation of the form

$$p_n F(x, y, t)^n + p_{n-1} F(x, y, t)^{n-1} + \cdots + p_0 = 0$$

- Introduction

#### Recall:

A power series  $F(x, y, t) \in \mathbb{Q}[[x, y, t]]$  is:

algebraic over Q(x, y, t) if there are polynomials
p<sub>0</sub>,..., p<sub>n</sub> ∈ Q[x, y, t] such that there is a nontrivial relation of the form

$$p_n F(x, y, t)^n + p_{n-1} F(x, y, t)^{n-1} + \cdots + p_0 = 0$$

*D*-finite over Q(x, y, t) if the Q(x, y, t)-VS spanned by all partial derivatives of F(x, y, t) has finite dimension

-Introduction

#### Recall:

A power series  $F(x, y, t) \in \mathbb{Q}[[x, y, t]]$  is:

• algebraic over  $\mathbb{Q}(x, y, t)$  if there are polynomials  $p_0, \ldots, p_n \in \mathbb{Q}[x, y, t]$  such that there is a nontrivial relation of the form

$$p_n F(x, y, t)^n + p_{n-1} F(x, y, t)^{n-1} + \cdots + p_0 = 0$$

*D*-finite over Q(x, y, t) if F satisfies a nontrivial linear DE for each x<sub>i</sub> ∈ {x, y, t} with coefficients in Q[x, y, z]

-Introduction

#### Recall:

A power series  $F(x, y, t) \in \mathbb{Q}[[x, y, t]]$  is:

• algebraic over  $\mathbb{Q}(x, y, t)$  if there are polynomials  $p_0, \ldots, p_n \in \mathbb{Q}[x, y, t]$  such that there is a nontrivial relation of the form

$$p_n F(x, y, t)^n + p_{n-1} F(x, y, t)^{n-1} + \cdots + p_0 = 0$$

*D*-finite over Q(x, y, t) if F satisfies a nontrivial linear DE for each x<sub>i</sub> ∈ {x, y, t} with coefficients in Q[x, y, z]



Introduction

#### Why care about algebraicity and D-finiteness?

#### Why care about algebraicity and D-finiteness?

Heuristically: we know these objects are "well-behaved"

# Why care about algebraicity and D-finiteness?

Heuristically: we know these objects are "well-behaved" Nice asymptotics:

# Why care about algebraicity and D-finiteness?

Heuristically: we know these objects are "well-behaved" Nice asymptotics:

Quadrant walks:  $f_n \sim K \cdot \rho^n \cdot n^{\alpha}$  for some constants  $K, \rho, \alpha$ 

# Why care about algebraicity and D-finiteness?

Heuristically: we know these objects are "well-behaved" Nice asymptotics:

Quadrant walks:  $f_n \sim K \cdot \rho^n \cdot n^{\alpha}$  for some constants  $K, \rho, \alpha$ Note that D-finiteness heavily depends on the model

# Why care about algebraicity and D-finiteness?

Heuristically: we know these objects are "well-behaved" Nice asymptotics:

Quadrant walks:  $f_n \sim K \cdot \rho^n \cdot n^{\alpha}$  for some constants  $K, \rho, \alpha$ Note that D-finiteness heavily depends on the model



D-finite GF non D-finite GF

Introduction

#### What's new?

Introduction

What's new?

A classification of "interesting" D-finite and algebraic models with "small steps" in the quarter plane, with multiplicities.

Introduction

What's new?

A classification of "interesting" D-finite and algebraic models with "small steps" in the quarter plane, with multiplicities. Main methods: group of the model, Gröbner basis techniques, kernel method, orbit sums, half orbit sums, *guessing* 

Introduction

# "Interesting" models

Introduction

# "Interesting" models

A model is interesting if it is:

Introduction

# "Interesting" models

A model is interesting if it is:

Not equivalent to a half plane model

Introduction

# "Interesting" models

A model is interesting if it is:

- Not equivalent to a half plane model
- Not equivalent to some "interesting" model by reflection about the diagonal x = y

Introduction

# "Interesting" models

A model is interesting if it is:

- Not equivalent to a half plane model
- Not equivalent to some "interesting" model by reflection about the diagonal x = y
- Not equivalent to  $\lambda S$  for some "interesting" model S, with  $\lambda \neq 0$ .

Introduction

# "Interesting" models

A model is interesting if it is:

- Not equivalent to a half plane model
- Not equivalent to some "interesting" model by reflection about the diagonal x = y
- Not equivalent to  $\lambda S$  for some "interesting" model S, with  $\lambda \neq 0$ .

There are 65,536 models whose steps have weights in  $\{0, 1, 2, 3\}$ , and 30,307 are "interesting".

Introduction

# "Interesting" models

A model is interesting if it is:

- Not equivalent to a half plane model
- Not equivalent to some "interesting" model by reflection about the diagonal x = y
- Not equivalent to  $\lambda S$  for some "interesting" model S, with  $\lambda \neq 0$ .

There are 65,536 models whose steps have weights in  $\{0,1,2,3\},$  and 30,307 are "interesting".

• (at least) 1457 of those are D-finite!

Introduction

# "Interesting" models

A model is interesting if it is:

- Not equivalent to a half plane model
- Not equivalent to some "interesting" model by reflection about the diagonal x = y
- Not equivalent to  $\lambda S$  for some "interesting" model S, with  $\lambda \neq 0$ .

There are 65,536 models whose steps have weights in  $\{0,1,2,3\},$  and 30,307 are "interesting".

- (at least) 1457 of those are D-finite!
  - ◊ (at least) 79 of these are algebraic!

Introduction

#### The Group of the Model

#### The Group of the Model

Let  $a_{u,v}$  be the multiplicity of step (u, v) in the model M.

#### The Group of the Model

Let  $a_{u,v}$  be the multiplicity of step (u, v) in the model M.  $K_M(x, y) = 1 - t \sum_{u,v} a_{u,v} x^u y^v$  is the kernel polynomial

#### The Group of the Model

Let  $a_{u,v}$  be the multiplicity of step (u, v) in the model M.  $K_M(x, y) = 1 - t \sum_{u,v} a_{u,v} x^u y^v$  is the kernel polynomial

Definition (The group of the model)

The group of the model  $G_M = \langle \Phi, \Psi \rangle$ , where

$$\Phi\colon (x,y)\mapsto \Big(\frac{1}{x}\frac{\sum_{v}a_{-1,v}y^{v}}{\sum_{v}a_{1,v}y^{v}}, y\Big), \Psi\colon (x,y)\mapsto \Big(x, \frac{1}{y}\frac{\sum_{u}a_{u,-1}x^{u}}{\sum_{u}a_{u,1}x^{u}}\Big)$$

#### The Group of the Model

Let  $a_{u,v}$  be the multiplicity of step (u, v) in the model M.  $K_M(x, y) = 1 - t \sum_{u,v} a_{u,v} x^u y^v$  is the kernel polynomial

Definition (The group of the model)

The group of the model  $G_M = \langle \Phi, \Psi \rangle$ , where

$$\Phi\colon (x,y)\mapsto \Big(\frac{1}{x}\frac{\sum_{v}a_{-1,v}y^{v}}{\sum_{v}a_{1,v}y^{v}}, y\Big), \Psi\colon (x,y)\mapsto \Big(x, \frac{1}{y}\frac{\sum_{u}a_{u,-1}x^{u}}{\sum_{u}a_{u,1}x^{u}}\Big)$$

If 
$$g \in G_M$$
,  $g(K(x, y)) = K(x, y)$ .
#### The Group of the Model

Let  $a_{u,v}$  be the multiplicity of step (u, v) in the model M.  $K_M(x, y) = 1 - t \sum_{u,v} a_{u,v} x^u y^v$  is the kernel polynomial

Definition (The group of the model)

The group of the model  $G_M = \langle \Phi, \Psi \rangle$ , where

$$\Phi\colon (x,y)\mapsto \Big(\frac{1}{x}\frac{\sum_{v}a_{-1,v}y^{v}}{\sum_{v}a_{1,v}y^{v}}, y\Big), \Psi\colon (x,y)\mapsto \Big(x, \frac{1}{y}\frac{\sum_{u}a_{u,-1}x^{u}}{\sum_{u}a_{u,1}x^{u}}\Big)$$

If 
$$g \in G_M$$
,  $g(K(x, y)) = K(x, y)$ .  
Note that  $\Phi$  and  $\Psi$  are involutions

Introduction

# More about $G_M$

-Introduction

# More about $G_M$

$$G_M = \left\{ 1, \Psi \Phi, (\Psi \Phi)^2, \dots, (\Psi \Phi)^{n-1}, \\ \Psi, (\Psi \Phi) \Psi, (\Psi \Phi)^2 \Psi, \dots, (\Psi \Phi)^{n-1} \Psi \right\}$$

Introduction

# More about $G_M$

$$egin{aligned} \mathcal{G}_{M} &= ig\{1,\Psi\Phi,(\Psi\Phi)^{2},\ldots,(\Psi\Phi)^{n-1},\ &\Psi,(\Psi\Phi)\Psi,(\Psi\Phi)^{2}\Psi,\ldots,(\Psi\Phi)^{n-1}\Psiig\} \end{aligned}$$

Since  $\Phi, \Psi$  are involutions, *G* must be dihedral.

Introduction

# More about $G_M$

$$egin{aligned} \mathcal{G}_{\mathcal{M}} &= ig\{1,\Psi\Phi,(\Psi\Phi)^2,\dots,(\Psi\Phi)^{n-1},\ \Psi,(\Psi\Phi)\Psi,(\Psi\Phi)^2\Psi,\dots,(\Psi\Phi)^{n-1}\Psiig\} \end{aligned}$$

Since  $\Phi, \Psi$  are involutions, G must be dihedral. For  $n \in \mathbb{N}$ ,  $D_{2n}$  appears if and only if  $(\Psi \Phi)^n = 1$  and there is no d|n such that  $(\Phi \Psi)^d = 1$ 

Introduction

# Example: Gessel model with multiplicities



 $\mathcal{G} = \{(1,0), (1,0), (1,1), (-1,0), (-1,-1), (-1,-1)\}$ 

Introduction

## Example: Gessel model with multiplicities



$$\mathcal{G} = \{(1,0), (1,0), (1,1), (-1,0), (-1,-1), (-1,-1)\}$$

 $a_{1,0} = 2 = a_{-1,-1}, a_{1,1} = 1 = a_{-1,0}$ 

Introduction

#### Example: Gessel model with multiplicities



$$\mathcal{G} = \{(1,0), (1,0), (1,1), (-1,0), (-1,-1), (-1,-1)\}$$

$$a_{1,0} = 2 = a_{-1,-1}, a_{1,1} = 1 = a_{-1,0}$$
  
 $\mathcal{K}_{\mathcal{G}}(x, y) = 1 - t(2x + xy + x^{-1} + 2x^{-1}y^{-1})$ 

Introduction

#### Example: Gessel model with multiplicities



$$\mathcal{G} = \{(1,0), (1,0), (1,1), (-1,0), (-1,-1), (-1,-1)\}$$

$$\begin{aligned} &a_{1,0} = 2 = a_{-1,-1}, a_{1,1} = 1 = a_{-1,0} \\ &\mathcal{K}_{\mathcal{G}}(x,y) = 1 - t(2x + xy + x^{-1} + 2x^{-1}y^{-1}) \\ &\mathcal{G}_{\mathcal{G}} = \left\langle \left(\frac{1}{xy}, y\right), \left(x, \frac{2}{x^2y}\right) \right\rangle \cong D_8 \end{aligned}$$

How can we classify models?

# Method

How can we classify models?

# Method

Idea: fix a group and find out which models have this group.

How can we classify models?

## Method

Idea: fix a group and find out which models have this group. For fixed *n*, we can explicitly write down  $(\Phi\Psi)^n(x, y) = \left(\frac{p}{q}, \frac{r}{s}\right)$ , where *p*, *q*, *r*, *s* are polynomials in the variables  $a_{-1,-1}, \ldots, a_{1,1}$  and *x*, *y*.

How can we classify models?

# Method

Idea: fix a group and find out which models have this group. For fixed *n*, we can explicitly write down  $(\Phi\Psi)^n(x, y) = \left(\frac{p}{q}, \frac{r}{s}\right)$ , where *p*, *q*, *r*, *s* are polynomials in the variables  $a_{-1,-1}, \ldots, a_{1,1}$  and *x*, *y*.  $(\Phi\Psi)^n(x, y) = (x, y)$ . Compare coefficients with respect to *x*, *y*.

How can we classify models?

# Method

Idea: fix a group and find out which models have this group. For fixed *n*, we can explicitly write down  $(\Phi\Psi)^n(x,y) = \left(\frac{p}{q}, \frac{r}{s}\right)$ , where *p*, *q*, *r*, *s* are polynomials in the variables  $a_{-1,-1}, \ldots, a_{1,1}$  and *x*, *y*.  $(\Phi\Psi)^n(x,y) = (x,y)$ . Compare coefficients with respect to *x*, *y*.

Obtain a system S of nonlinear equations for the  $a_{u,v}$ . The points  $(a_{-1,-1}, \ldots, a_{1,1}) \in \mathbb{C}^8$  satisfying this system form an algebraic variety V.

Task: Determine this variety for fixed n. Then prove that the resulting generating functions are D-finite.

Task: Determine this variety for fixed n. Then prove that the resulting generating functions are D-finite. Determine the variety for a fixed n:

Task: Determine this variety for fixed n. Then prove that the resulting generating functions are D-finite.

Determine the variety for a fixed *n*:

Find generators for the irreducible components of the radical  $\sqrt{I(V)}$ .

Task: Determine this variety for fixed n. Then prove that the resulting generating functions are D-finite.

Determine the variety for a fixed *n*:

Find generators for the irreducible components of the radical  $\sqrt{I(V)}$ .

Use the generators to find relations among the  $a_{u,v}$ 

Task: Determine this variety for fixed n. Then prove that the resulting generating functions are D-finite.

Determine the variety for a fixed n:

Find generators for the irreducible components of the radical  $\sqrt{I(V)}$ .

Use the generators to find relations among the  $a_{u,v}$ 

Prove the resulting generating functions are D-finite:

Task: Determine this variety for fixed n. Then prove that the resulting generating functions are D-finite.

Determine the variety for a fixed n:

Find generators for the irreducible components of the radical  $\sqrt{I(V)}$ .

Use the generators to find relations among the  $a_{u,v}$ 

Prove the resulting generating functions are D-finite:

Use the kernel, orbit sum, or half orbit sum method to prove D-finiteness of the generating function  $F_M(x, y, z, t)$  for every M in the family.

└─ The Classification

# $D_4$

-The Classification

# $D_4$

#### Family 0 Defining equations: $a_{0,1}a_{1,-1} = a_{0,-1}a_{1,1}$ ,

$$a_{-1,1}a_{1,-1}=a_{-1,-1}a_{1,1}$$

$$a_{-1,1}a_{0,-1} = a_{-1,-1}a_{0,1}$$



-The Classification

 $D_4$ 

| Family 0                                   |                            |
|--------------------------------------------|----------------------------|
| Defining equations:                        |                            |
| $a_{0,1}a_{1,-1}=a_{0,-1}a_{1,1}$ ,        | $5 \xrightarrow{13}{5} 15$ |
| $a_{-1,1}a_{1,-1}=a_{-1,-1}a_{1,1}$ ,      | $-3  6^{-9}$               |
| $a_{-1} a_{0} a_{-1} = a_{-1} a_{0} a_{0}$ | -7                         |

All models in Family 0 have a D-finite generating function.

- The Classification

 $D_4$ 

| Family 0                                |                                                |
|-----------------------------------------|------------------------------------------------|
| Defining equations:                     |                                                |
| $a_{0,1}a_{1,-1}=a_{0,-1}a_{1,1}$ ,     |                                                |
| $a_{-1,1}a_{1,-1} = a_{-1,-1}a_{1,1}$ , | $-3 \xrightarrow{-9}_{2} \xrightarrow{-9}_{6}$ |
| $a_{-1,1}a_{0,-1} = a_{-1,-1}a_{0,1}$   | -7                                             |

All models in Family 0 have a D-finite generating function. All models with group D4 belong to Family 0.

- The Classification

 $D_4$ 

#### Family 0 Defining equations: $a_{0,1}a_{1,-1} = a_{0,-1}a_{1,1},$ $a_{-1,1}a_{1,-1} = a_{-1,-1}a_{1,1},$ $a_{-1,1}a_{0,-1} = a_{-1,-1}a_{0,1}$ $5 \xrightarrow{13}_{-3} \xrightarrow{5}_{-9} \xrightarrow{-9}_{-7}$

All models in Family 0 have a D-finite generating function. All models with group D4 belong to Family 0. Note:  $a_{0,1}a_{1,-1}$  (and other products) need not be integers, or

even rational numbers.

- The Classification

### $D_6$

Family 1a Defining equations:  $a_{1,1} = a_{-1,-1} = 0$ ,  $\begin{array}{c} 3 \\ 5 \\ & 5 \end{array} \begin{array}{c} 1/5 \\ 1/3 \end{array}$  $a_{-1,1}a_{1,-1} = a_{-1,0}a_{1,0} = a_{0,1}a_{0,-1}$ Family 1b Defining equations:  $a_{1,-1} = a_{-1,1} = 0$ ,  $5 \xrightarrow{1}{3} \xrightarrow{1}{3}$  $a_{-1,0}a_{1,0} = a_{-1,-1}a_{1,1} = a_{0,-1}a_{0,1}$ 

- The Classification

# $D_6$

Family 1a Defining equations:  $a_{1,1} = a_{-1,-1} = 0$ ,  $\begin{array}{c} 3 \\ 5 \\ & 5 \end{array} \begin{array}{c} 2 \\ 1/5 \\ 1/3 \end{array}$  $a_{-1,1}a_{1,-1} = a_{-1,0}a_{1,0} = a_{0,1}a_{0,-1}$ Family 1b Defining equations:  $a_{1,-1} = a_{-1,1} = 0$ ,  $\begin{array}{c} 5 \xleftarrow{1/3}{3} \xleftarrow{1/5}{1/5} \end{array}$  $a_{-1,0}a_{1,0} = a_{-1,-1}a_{1,1} = a_{0,-1}a_{0,1}$ 

Both families have D-finite generating functions.

- The Classification

# $D_6$

Family 1a Defining equations:  $a_{1,1} = a_{-1,-1} = 0$ ,  $\begin{array}{c} 3 \\ 5 \\ & 5 \end{array} \begin{array}{c} 1/5 \\ 1/3 \end{array}$  $a_{-1,1}a_{1,-1} = a_{-1,0}a_{1,0} = a_{0,1}a_{0,-1}$ Family 1b Defining equations:  $a_{1,-1} = a_{-1,1} = 0$ ,  $5 \xrightarrow{3} \xrightarrow{7}$  $a_{-1,0}a_{1,0} = a_{-1,-1}a_{1,1} = a_{0,-1}a_{0,1}$ 

Both families have D-finite generating functions. Family 1b models actually have *algebraic* GFs!

- The Classification

# $D_6$ (cont)

Family 2a Defining equations:  $a_{1,0} = a_{1,1} = 0, a_{0,-1}a_{-1,1} = 2a_{0,1}a_{-1,-1}, a_{0,-1}a_{0,1} = 2a_{-1,1}a_{1,-1}$   $a_{0,-1}^7 = 4a_{1,-1}a_{-1,-1}, a_{0,-1}a_{0,1} = 2a_{-1,1}a_{1,-1}$   $a_{1,2}^7 = 1$ 

Family 2b Defining equations:  $a_{1,0} = a_{1,-1} = 0, a_{0,1}a_{-1,-1} = 2a_{0,-1}a_{-1,1}, a_{0,1}a_{0,-1} = 2a_{-1,-1}a_{1,1}$   $a_{0,1}^{1 \ 2 \ 1} = 4a_{1,1}a_{-1,1}, a_{0,1}a_{0,-1} = 2a_{-1,-1}a_{1,1}$   $5 \bigvee_{7 \ 7}$ 

-The Classification

# $D_6$ (cont)

Family 2a Defining equations:  $a_{1,0} = a_{1,1} = 0, a_{0,-1}a_{-1,1} = 2a_{0,1}a_{-1,-1},$   $a_{0,-1}^2 = 4a_{1,-1}a_{-1,-1}, a_{0,-1}a_{0,1} = 2a_{-1,1}a_{1,-1}$  Family 2b Defining equations:  $a_{1,0} = a_{1,-1} = 0, a_{0,1}a_{-1,-1} = 2a_{0,-1}a_{-1,1},$   $1 \ge 1$ 

$$a_{0,1}^2 = 4a_{1,1}a_{-1,1}, \ a_{0,1}a_{0,-1} = 2a_{-1,-1}a_{1,1}$$

Both families have D-finite generating functions.

- The Classification

# $D_6$ (cont)

Family 2a Defining equations:  $a_{1,0} = a_{1,1} = 0, a_{0,-1}a_{-1,1} = 2a_{0,1}a_{-1,-1}, a_{0,-1}a_{0,-1}a_{0,1} = 2a_{-1,1}a_{1,-1}$  Family 2b Defining equations:  $a_{1,0} = a_{1,-1} = 0, a_{0,1}a_{-1,-1} = 2a_{0,-1}a_{-1,1}, a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a_{0,-1}a$ 

$$a_{0,1}^2 = 4a_{1,1}a_{-1,1}, a_{0,1}a_{0,-1} = 2a_{-1,-1}a_{1,1}$$

Both families have D-finite generating functions. Family 2b models have *algebraic* GFs.

- The Classification

# $D_6$ (still cont)

Family 3a Defining equations:  $a_{-1,0} = a_{-1,-1} = 0$ ,  $a_{0,1}a_{1,-1} = 2a_{0,-1}a_{1,1}$ ,  $a_{0,1}^2 = 4a_{-1,1}a_{1,1}$ ,  $a_{0,1}a_{0,-1} = 2a_{1,-1}a_{-1,1}$ 7 7

#### Family 3b

Defining equations: 2 + 6 = 2 + 4 = 0

$$a_{-1,0} = a_{-1,1} = 0, \ a_{0,-1}a_{1,1} = 2a_{0,1}a_{1,-1}, a_{0,-1}^2 = 4a_{-1,-1}a_{1,-1}, \ a_{0,-1}a_{0,1} = 2a_{1,1}a_{-1,-1}$$

- The Classification

# $D_6$ (still cont)



Again, all families have D-finite generating functions.

-The Classification

#### $D_8$

Family 4a Defining equations:  $a_{1,-1}a_{-1,1} = a_{1,0}a_{-1,0},$   $a_{1,1} = a_{0,1} = a_{0,-1} = a_{-1,-1} = 0$ Family 4b Defining equations:  $a_{1,1}a_{-1,-1} = a_{1,0}a_{-1,0},$   $a_{1,-1} = a_{0,1} = a_{0,-1} = a_{-1,1} = 0$  $a_{1,-1} = a_{0,1} = a_{0,-1} = a_{-1,1} = 0$ 

- The Classification

 $D_8$ 

Family 4a Defining equations:  $a_{1,-1}a_{-1,1} = a_{1,0}a_{-1,0},$   $a_{1,1} = a_{0,1} = a_{0,-1} = a_{-1,-1} = 0$  Family 4b Defining equations:  $a_{1,1}a_{-1,-1} = a_{1,0}a_{-1,0},$   $a_{1,-1} = a_{0,1} = a_{0,-1} = a_{-1,1} = 0$   $a_{1,1}a_{-1,-1} = a_{1,0}a_{-1,0},$  $a_{1,-1} = a_{0,1} = a_{0,-1} = a_{-1,1} = 0$ 

Both families have D-finite generating functions.

- The Classification

 $D_8$ 

Family 4a Defining equations:  $a_{1,-1}a_{-1,1} = a_{1,0}a_{-1,0},$   $a_{1,1} = a_{0,1} = a_{0,-1} = a_{-1,-1} = 0$ Family 4b Defining equations:  $a_{1,1}a_{-1,-1} = a_{1,0}a_{-1,0},$   $a_{1,-1} = a_{0,1} = a_{0,-1} = a_{-1,1} = 0$  $a_{1,-1} = a_{0,1} = a_{0,-1} = a_{-1,1} = 0$ 

Both families have D-finite generating functions. Family 4b models have *algebraic* GFs
└─ The Classification

# $D_{10}$

- The Classification

# $D_{10}$

We can find families as in the other cases, but are not sure we have the full characterization.

- The Classification

## $D_{10}$

We can find families as in the other cases, but are not sure we have the full characterization.



- The Classification

# $D_{10}$

We can find families as in the other cases, but are not sure we have the full characterization.



These models do not fit into any of the previous families.

- The Classification

# $D_{10}$

We can find families as in the other cases, but are not sure we have the full characterization.



These models do not fit into any of the previous families. Their GFs are (probably\*) algebraic.

- The Classification

## What next?

- The Classification

### What next?

#### Finite group $\iff$ D-finite generating function?

- The Classification

### What next?

Finite group ↔ D-finite generating function? This is true in the multiplicity 1 case. It seems that it is true here as well. Is there a combinatorial proof?

- The Classification

### What next?

Finite group  $\iff$  D-finite generating function? This is true in the multiplicity 1 case. It seems that it is true here as well. Is there a combinatorial proof? Are there models whose groups are larger than  $D_{10}$ ?

- The Classification

### What next?

└─ The Classification

## What next?

Is it possible to do a similar classification in the 3d case?

└─ The Classification

## What next?

Finite group  $\iff$  D-finite generating function?

This is true in the multiplicity 1 case. It seems that it is true here as well. Is there a combinatorial proof?

Are there models whose groups are larger than  $D_{10}$ ? We've done calculations for multiplicity 4 and 5 and found nothing bigger.

Is it possible to do a similar classification in the 3d case? Prove that the remaining 28,850 "interesting" cases have non-D-finite GFs.