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Walks in the Quarter Plane with Multiple Steps

Introduction

We consider 2D lattice walks in the positive quadrant (Z≥0)2

with small steps s ∈ {−1, 0, 1}2 \ {(0, 0)} and multiplicities.

A model is a multiset of admissible steps s.

Example

2
1

1
2

G = {(1, 0), (1, 0), (1, 1), (−1, 0), (−1,−1), (−1,−1)}

Main question: given a model M, what is the nature of its
generating function

FM(x , y , t) =
∞∑
n=0

∑
i ,j

fi ,j ,nx iy j tn

Is it algebraic? D-finite? Something else?

2 / 19



Walks in the Quarter Plane with Multiple Steps

Introduction

We consider 2D lattice walks in the positive quadrant (Z≥0)2

with small steps s ∈ {−1, 0, 1}2 \ {(0, 0)} and multiplicities.
A model is a multiset of admissible steps s.

Example

2
1

1
2

G = {(1, 0), (1, 0), (1, 1), (−1, 0), (−1,−1), (−1,−1)}

Main question: given a model M, what is the nature of its
generating function

FM(x , y , t) =
∞∑
n=0

∑
i ,j

fi ,j ,nx iy j tn

Is it algebraic? D-finite? Something else?

2 / 19



Walks in the Quarter Plane with Multiple Steps

Introduction

We consider 2D lattice walks in the positive quadrant (Z≥0)2

with small steps s ∈ {−1, 0, 1}2 \ {(0, 0)} and multiplicities.
A model is a multiset of admissible steps s.

Example

2
1

1
2

G = {(1, 0), (1, 0), (1, 1), (−1, 0), (−1,−1), (−1,−1)}

Main question: given a model M, what is the nature of its
generating function

FM(x , y , t) =
∞∑
n=0

∑
i ,j

fi ,j ,nx iy j tn

Is it algebraic? D-finite? Something else?

2 / 19



Walks in the Quarter Plane with Multiple Steps

Introduction

We consider 2D lattice walks in the positive quadrant (Z≥0)2

with small steps s ∈ {−1, 0, 1}2 \ {(0, 0)} and multiplicities.
A model is a multiset of admissible steps s.

Example

2
1

1
2

G = {(1, 0), (1, 0), (1, 1), (−1, 0), (−1,−1), (−1,−1)}

Main question: given a model M, what is the nature of its
generating function

FM(x , y , t) =
∞∑
n=0

∑
i ,j

fi ,j ,nx iy j tn

Is it algebraic? D-finite? Something else?
2 / 19



Walks in the Quarter Plane with Multiple Steps

Introduction

A bit of history

Fayolle, Iasnogorodski, Malyshev: Random Walks in the
Quarter-Plane

: aka the “Yellow book”

Bousquet-Mélou and Mishna: Walks with Small Steps in the
Quarter Plane
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Walks in the Quarter Plane with Multiple Steps

Introduction

Recall:

A power series F (x , y , t) ∈ Q[[x , y , t]] is:

v algebraic over Q(x , y , t) if there are polynomials
p0, . . . , pn ∈ Q[x , y , t] such that there is a nontrivial relation of
the form

pnF (x , y , t)n + pn−1F (x , y , t)n−1 + · · ·+ p0 = 0

v D-finite over Q(x , y , t) if F satisfies a nontrivial linear DE for
each xi ∈ {x , y , t} with coefficients in Q[x , y , z ]
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Walks in the Quarter Plane with Multiple Steps

Introduction

Why care about algebraicity and D-finiteness?

Heuristically: we know these objects are “well-behaved”

Nice asymptotics:

Quadrant walks: fn ∼ K · ρn · nα for some constants K , ρ, α

Note that D-finiteness heavily depends on the model

D-finite GF non D-finite GF
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Introduction

What’s new?

A classification of “interesting” D-finite and algebraic models
with “small steps” in the quarter plane, with multiplicities.

Main methods: group of the model, Gröbner basis techniques,
kernel method, orbit sums, half orbit sums, guessing
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kernel method, orbit sums, half orbit sums, guessing

6 / 19



Walks in the Quarter Plane with Multiple Steps

Introduction

What’s new?

A classification of “interesting” D-finite and algebraic models
with “small steps” in the quarter plane, with multiplicities.

Main methods: group of the model, Gröbner basis techniques,
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Walks in the Quarter Plane with Multiple Steps

Introduction

“Interesting” models

A model is interesting if it is:

v Not equivalent to a half plane model
v Not equivalent to some “interesting” model by reflection about

the diagonal x = y
v Not equivalent to λS for some “interesting” model S , with

λ 6= 0.

There are 65,536 models whose steps have weights in
{0, 1, 2, 3}, and 30,307 are “interesting”.

v (at least) 1457 of those are D-finite!

F (at least) 79 of these are algebraic!
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Introduction

The Group of the Model

Let au,v be the multiplicity of step (u, v) in the model M.

KM(x , y) = 1− t
∑

u,v au,vxuy v is the kernel polynomial

Definition (The group of the model)

The group of the model GM = 〈Φ,Ψ〉, where

Φ: (x , y) 7→
(1

x

∑
v a−1,vy v∑
v a1,vy v

, y
)
,Ψ: (x , y) 7→

(
x ,

1

y

∑
u au,−1xu∑
u au,1xu

)

If g ∈ GM , g(K (x , y)) = K (x , y).

Note that Φ and Ψ are involutions.
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Introduction

More about GM

GM =
{

1,ΨΦ, (ΨΦ)2, . . . , (ΨΦ)n−1,

Ψ, (ΨΦ)Ψ, (ΨΦ)2Ψ, . . . , (ΨΦ)n−1Ψ
}

Since Φ,Ψ are involutions, G must be dihedral.

For n ∈ N, D2n appears if and only if (ΨΦ)n = 1 and there is
no d |n such that (ΦΨ)d = 1
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Introduction

Example: Gessel model with multiplicities

2

1

1

2

G = {(1, 0), (1, 0), (1, 1), (−1, 0), (−1,−1), (−1,−1)}

a1,0 = 2 = a−1,−1, a1,1 = 1 = a−1,0

KG(x , y) = 1− t(2x + xy + x−1 + 2x−1y−1)

GG =
〈(

1
xy , y

)
,
(

x , 2
x2y

)〉
∼= D8
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Walks in the Quarter Plane with Multiple Steps

How can we classify models?

Method

Idea: fix a group and find out which models have this group.

For fixed n, we can explicitly write down

(ΦΨ)n(x , y) =
(
p
q ,

r
s

)
, where p, q, r , s are polynomials in the

variables a−1,−1, . . . , a1,1 and x , y .

(ΦΨ)n(x , y) = (x , y). Compare coefficients with respect to
x , y .

Obtain a system S of nonlinear equations for the au,v . The
points (a−1,−1, . . . , a1,1) ∈ C8 satisfying this system form an
algebraic variety V .
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How can we classify models?

Task: Determine this variety for fixed n. Then prove that the
resulting generating functions are D-finite.

Determine the variety for a fixed n:

Find generators for the irreducible components of the radical√
I (V ).

Use the generators to find relations among the au,v

Prove the resulting generating functions are D-finite:

Use the kernel, orbit sum, or half orbit sum method to prove
D-finiteness of the generating function FM(x , y , z , t) for every
M in the family.
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Walks in the Quarter Plane with Multiple Steps

The Classification

D4

Family 0

Defining equations:
a0,1a1,−1 = a0,−1a1,1,
a−1,1a1,−1 = a−1,−1a1,1,
a−1,1a0,−1 = a−1,−1a0,1

2
−3

5

−7

13

6
−9
15

All models in Family 0 have a D-finite generating function.

All models with group D4 belong to Family 0.

Note: a0,1a1,−1 (and other products) need not be integers, or
even rational numbers.
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Walks in the Quarter Plane with Multiple Steps

The Classification

D6

Family 1a

Defining equations:
a1,1 = a−1,−1 = 0,
a−1,1a1,−1 = a−1,0a1,0 = a0,1a0,−1

1/2
1/3
1/5

2
3
5

Family 1b

Defining equations:
a1,−1 = a−1,1 = 0,
a−1,0a1,0 = a−1,−1a1,1 = a0,−1a0,1

1/2
1/3
1/5

2
3
5

Both families have D-finite generating functions.

Family 1b models actually have algebraic GFs!
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Walks in the Quarter Plane with Multiple Steps

The Classification

D6 (cont)

Family 2a

Defining equations:
a1,0 = a1,1 = 0, a0,−1a−1,1 = 2a0,1a−1,−1,
a2

0,−1 = 4a1,−1a−1,−1, a0,−1a0,1 = 2a−1,1a1,−1

7 7

5

1 2 1

Family 2b

Defining equations:
a1,0 = a1,−1 = 0, a0,1a−1,−1 = 2a0,−1a−1,1,
a2

0,1 = 4a1,1a−1,1, a0,1a0,−1 = 2a−1,−1a1,1
7 7

5

1 2 1

Both families have D-finite generating functions.

Family 2b models have algebraic GFs.
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Walks in the Quarter Plane with Multiple Steps

The Classification

D6 (cont)
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Both families have D-finite generating functions.
Family 2b models have algebraic GFs.
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Walks in the Quarter Plane with Multiple Steps

The Classification

D6 (still cont)

Family 3a

Defining equations:
a−1,0 = a−1,−1 = 0, a0,1a1,−1 = 2a0,−1a1,1,
a2

0,1 = 4a−1,1a1,1, a0,1a0,−1 = 2a1,−1a−1,1
77

5

121

Family 3b

Defining equations:
a−1,0 = a−1,1 = 0, a0,−1a1,1 = 2a0,1a1,−1,
a2

0,−1 = 4a−1,−1a1,−1, a0,−1a0,1 = 2a1,1a−1,−1

77

5

121

Again, all families have D-finite generating functions.
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Walks in the Quarter Plane with Multiple Steps

The Classification

D8

Family 4a

Defining equations:
a1,−1a−1,1 = a1,0a−1,0,
a1,1 = a0,1 = a0,−1 = a−1,−1 = 0

6
3

2
4

Family 4b

Defining equations:
a1,1a−1,−1 = a1,0a−1,0,
a1,−1 = a0,1 = a0,−1 = a−1,1 = 0

2
4

6
3

Both families have D-finite generating functions.

Family 4b models have algebraic GFs
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Walks in the Quarter Plane with Multiple Steps

The Classification

D10

We can find families as in the other cases, but are not sure we
have the full characterization.

3 models with group D10

1
1

2
1
2
1

1
1
2
1

1

1
1

2
1
2
1

2

1
1

1

These models do not fit into any of the previous families.

Their GFs are (probably*) algebraic.
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Walks in the Quarter Plane with Multiple Steps

The Classification

What next?

Finite group ⇐⇒ D-finite generating function?

This is true in the multiplicity 1 case. It seems that it is true
here as well. Is there a combinatorial proof?

Are there models whose groups are larger than D10?

We’ve done calculations for multiplicity 4 and 5 and found
nothing bigger.

Is it possible to do a similar classification in the 3d case?

Prove that the remaining 28,850 “interesting” cases have
non-D-finite GFs.
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