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We consider 2D lattice walks in the positive quadrant (Z>g)?
with small steps s € {—1,0,1}2\ {(0,0)} and multiplicities.
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We consider 2D lattice walks in the positive quadrant (Z>g)?
with small steps s € {—1,0,1}2\ {(0,0)} and multiplicities.
A model is a multiset of admissible steps s.

1
1 ;74§ 2
2

g= {(1’ O)a (1a 0)7 (1a 1)7 (_1a 0)7 (_1a _1)7 (_1a _1)}
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Walks in the Quarter Plane with Multiple Steps
L introduction

We consider 2D lattice walks in the positive quadrant (Z>g)?

with small steps s € {—1,0,1}2\ {(0,0)} and multiplicities.
A model is a multiset of admissible steps s.

Example

A 2

= {(1’ 0)7 (1* 0)7 (17 1)7 (_17 0)7 (_17 _1)7 (_17 _1)}

N =

Main question: given a model M, what is the nature of its
generating function

mix,y,t szunxwt

n=0 i,
Is it algebraic? D-finite? Something else?
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Fayolle, lasnogorodski, Malyshev: Random Walks in the
Quarter-Plane
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Fayolle, lasnogorodski, Malyshev: Random Walks in the
Quarter-Plane : aka the "Yellow book”

Bousquet-Mélou and Mishna: Walks with Small Steps in the
Quarter Plane
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A power series F(x,y,t) € Q[[x,y,t]] is:
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A power series F(x,y,t) € Q[[x,y,t]] is:

® algebraic over Q(x, y, t) if there are polynomials
Pos - - -5 Pn € Q[x,y, t] such that there is a nontrivial relation of
the form

PaF(x,y,t)" + pp1F(x,y,t)" 1 4+ +pp=0
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® algebraic over Q(x, y, t) if there are polynomials
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the form
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¢ D-finite over Q(x, y, t) if the Q(x, y, t)-VS spanned by all
partial derivatives of F(x,y, t) has finite dimension
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® algebraic over Q(x, y, t) if there are polynomials
Pos - - -5 Pn € Q[x,y, t] such that there is a nontrivial relation of
the form

PaF(x,y,t)" + pp1F(x,y,t)" 1 4+ +pp=0

*  D-finite over Q(x, y, t) if F satisfies a nontrivial linear DE for
each x; € {x,y, t} with coefficients in Q[x, y, z]
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Walks in the Quarter Plane with Multiple Steps
L introduction

Recall:

A power series F(x,y,t) € Q[[x,y, t]] is:
* algebraic over Q(x, y, t) if there are polynomials
Po, - - -, Pn € Q[x, y, t] such that there is a nontrivial relation of
the form

pnF(vav t)n—'_pnle(Xaya t)nil + -+ po =0

¢ D-finite over Q(x, y, t) if F satisfies a nontrivial linear DE for
each x; € {x,y, t} with coefficients in Q[x, y, z]

D-Finite Non-D-finite

Algebraic
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Heuristically: we know these objects are “well-behaved”
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Heuristically: we know these objects are “well-behaved”
Nice asymptotics:
Quadrant walks: f, ~ K- p" - n® for some constants K, p, «

Note that D-finiteness heavily depends on the model

D-finite GF non D-finite GF
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A classification of “interesting” D-finite and algebraic models
with “small steps” in the quarter plane, with multiplicities.

6/19



A classification of “interesting” D-finite and algebraic models
with “small steps” in the quarter plane, with multiplicities.

Main methods: group of the model, Grobner basis techniques,
kernel method, orbit sums, half orbit sums, guessing
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“Interesting” models

A model is interesting if it is:

¢ Not equivalent to a half plane model
* Not equivalent to some “interesting” model by reflection about

the diagonal x =y
¢ Not equivalent to AS for some “interesting” model S, with

A #£0.
There are 65,536 models whose steps have weights in
{0,1,2,3}, and 30,307 are “interesting”.

® (at least) 1457 of those are D-finite!
<O (at least) 79 of these are algebraic!

7/19



8/19



Let a,,, be the multiplicity of step (u, v) in the model M.
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Walks in the Quarter Plane with Multiple Steps
L introduction

The Group of the Model

Let a,, be the multiplicity of step (u, v) in the model M.
Km(x,y) =1—1t>_, , auvx"y" is the kernel polynomial

Definition (The group of the model)
The group of the model Gy = (®, V), where

1 —1vy” 1 —1x"
O (x,y) (vaaiw, Y)W (xy) = (x fM>
X Y., aivyY y >, duix
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The Group of the Model
Let a,, be the multiplicity of step (u, v) in the model M.
Km(x,y) =1—1t>_, , auvx"y" is the kernel polynomial

Definition (The group of the model)
The group of the model Gy = (®, V), where

1 —1vy” 1 —1x"
O (x,y) (vaaiw, Y)W (xy) = (x fM>
X Y., aivyY y >, duix

lfg € Gy, g(K(X7y)) = K(X7y)'
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Walks in the Quarter Plane with Multiple Steps
L introduction

The Group of the Model

Let a,, be the multiplicity of step (u, v) in the model M.
Km(x,y) =1—1t>_, , auvx"y" is the kernel polynomial

Definition (The group of the model)
The group of the model Gy = (®, V), where

1 —1vy” 1 —1x"
O (x,y) (vaaiw, Y)W (xy) = (x fM>
X Y., aivyY y >, duix

If g € Gu, g(K(x,y)) = K(x,y).
Note that ¢ and WV are involutions.
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Gy = {1, Vo, (Vo) ... (Vo)1
W, (VO)W, (W)W, ... (V)" 1w}
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Gy = {1, Vo, (Vo) ... (Vo)1
W, (VO)W, (W)W, ... (V)" 1w}

Since ®, V¥ are involutions, G must be dihedral.

For n € N, Dy, appears if and only if (W®)" =1 and there is
no d|n such that (é¥)? =1
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g= {(1’ 0)7 (1’ 0)? (17 1)’ (_17 0)’ (_17 _1)’ (_1’ _1)}
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g= {(1’ 0)7 (1’ 0)? (17 1)’ (_17 0)’ (_17 _1)’ (_1’ _1)}

al0=2=a1-1,a1=1=a1p
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g= {(1’ 0)7 (17 0)? (17 1)’ (_17 0)’ (_17 _1)’ (_1’ _1)}

ajo = 2 = ai1-1,a11= 1= a_10
Kg(x,y) =1—t(2x+xy +x~ 1 +2x71y71)
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g= {(1’ 0)7 (17 0)? (17 1)’ (_17 0)’ (_17 _1)’ (_1’ _1)}

ajo = 2 = ai1-1,a11= 1= a_10
Kg(x,y) =1—t(2x+xy +x~ 1 +2x71y71)

6= ((59) (x3)) = 0

10/19



11/19



Idea: fix a group and find out which models have this group.
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For fixed n, we can explicitly write down
(PV)"(x,y) = (q s), where p, g, r, s are polynomials in the
variables a_; _1,...,a11 and X, y.
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Idea: fix a group and find out which models have this group.

For fixed n, we can explicitly write down

(PV)"(x,y) = (q s), where p, g, r, s are polynomials in the
variables a_; _1,...,a11 and X, y.

(P¥V)"(x,y) = (x,y). Compare coefficients with respect to
X, Y.
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Walks in the Quarter Plane with Multiple Steps

I—How can we classify models?

Method

Idea: fix a group and find out which models have this group.
For fixed n, we can explicitly write down

(PV)"(x,y) = (g, g) where p, g, r, s are polynomials in the
variables a_; _1,...,a1,1 and x, y.

(PWV)"(x,y) = (x,y). Compare coefficients with respect to

X, y.
Obtain a system S of nonlinear equations for the a,,. The
points (a—1,—1,...,a1,1) € C8 satisfying this system form an

algebraic variety V.
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Task: Determine this variety for fixed n. Then prove that the
resulting generating functions are D-finite.
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Find generators for the irreducible components of the radical
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Walks in the Quarter Plane with Multiple Steps

I—How can we classify models?

Task: Determine this variety for fixed n. Then prove that the
resulting generating functions are D-finite.
Determine the variety for a fixed n:

Find generators for the irreducible components of the radical
(V).
Use the generators to find relations among the a,
Prove the resulting generating functions are D-finite:

Use the kernel, orbit sum, or half orbit sum method to prove

D-finiteness of the generating function Fu(x,y,z, t) for every
M in the family.
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Defining equations:

13
40,141,—1 = 40,—-141,1, 5 15
a-11d1,-1 = 4ad-1,-13a1,1, _g 6_9
-7

a-1130,—-1 = 3-1,-140,1
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Defining equations:

13
40,141,—1 = 40,—-141,1, 5 15
a-11d1,-1 = 4ad-1,-13a1,1, _g 6_9

4-1,140,—1 = 4—1,—-140,1

All models in Family 0 have a D-finite generating function.

All models with group D4 belong to Family 0.
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Walks in the Quarter Plane with Multiple Steps
LThe Classification

D

Family 0

Defining equations:

40,141,—1 = 40,-191,1, 5 o 15
4-11a1,-1 = 4a-1-14a11, 7;’ gg

a-1,130,—1 = a-1,-14a0,1

All models in Family 0 have a D-finite generating function.
All models with group D4 belong to Family 0.

Note: ag1a1,—1 (and other products) need not be integers, or
even rational numbers.
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Defining equations:

2

a1 =a-1-1=0, 3
d-1,141,—-1 = a-1,041,0 = 40,140,—1 > ? ifg
1/2

Defining equations:

_ _ 1/2
a,—1=a-11=0, / 1/3
a-1,081,0 = a-1,-1a1,1 = a0,—130,1 F3> % 1/5

2
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Walks in the Quarter Plane with Multiple Steps
LThe Classification

Ds

Family 1a

Defining equations:
ag1=a-1,1=0,

d_1,1d1,—1 = 4-1,091,0 = 40,140,—1

Family 1b

Defining equations:
ai—1=a-11=0,

4-1,0d81,0 = d-1,-1a1,1 = 40,-140,1

Both families have D-finite generating functions.

T
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Walks in the Quarter Plane with Multiple Steps
LThe Classification

Ds

Family 1a

Defining equations:

ag1=a-1,1=0, 3.2

d-1,141,—-1 = 4-1,041,0 = 40,140,—1 5 % };g
1/2

Family 1b

Defining equations:

a—1=a11=0, 1/2 e

a-1,0d1,0 = a-1,-1a1,1 = 30,—140,1 g % 1/5
2

Both families have D-finite generating functions.
Family 1b models actually have algebraic GFs!



Walks in the Quarter Plane with Multiple Steps
LThe Classification

Ds (cont)

Family 2a

Defining equations:

aj0=a11 =0, ap,-1a-11 = 2ap;1a-1,-1,
337_1 =4a1,1a 1,1, 90,-140,1 = 231,141, 1

Family 2b

Defining equations:

a0 =ay,-1=0, ap1a-1,-1 = 2ap,-1a-11,
a5, =4a11a-11, a140,-1 =2a_1_1a11



Walks in the Quarter Plane with Multiple Steps
LThe Classification

Ds (cont)

Family 2a

Defining equations:

aj0=a11 =0, ap,-1a-11 = 2ap;1a-1,-1, T

337_1 =421 1411, ,-140,1 = 23-1181,-1 5 %\
121

Family 2b

Defining equations:

aio=a1,-1=0, a1a-1,-1=2ap,-1a-11, 121

3371 =4a11a 11, 40,130,-1 = 2a-1,-131,1 2 }I/
77

Both families have D-finite generating functions.
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Ds (cont)

Family 2a

Defining equations:

aj0=a11 =0, ap,-1a-11 = 2ap;1a-1,-1, T

337_1 =421 1411, ,-140,1 = 23-1181,-1 5 %\
121

Family 2b

Defining equations:

aio=a1,-1=0, a1a-1,-1=2ap,-1a-11, 121

3371 =4a11a 11, 40,130,-1 = 2a-1,-131,1 2 }I/
77

Both families have D-finite generating functions.
Family 2b models have algebraic GFs.



Walks in the Quarter Plane with Multiple Steps
LThe Classification

Ds (still cont)

Family 3a

Defining equations:

ai10=a1-1=0 ap1a1,-1=2a,-1a11,
3%,1 =4a_ 131311, 30,1d0,—1 = 231,-13-1,1

Family 3b

Defining equations:

a_10=a-11=0, ap—1a1,1 = 2ap,1a1,-1,
33,,1 =4a_1,131,-1, d0,-130,1 = 231,14-1,-1



Walks in the Quarter Plane with Multiple Steps
LThe Classification

Ds (still cont)

Family 3a

Defining equations:

ai10=a1-1=0 ap1a1,-1=2a,-1a11, 121

3%,1 =4a 11311, 40,130,—1 = 231,-1a-1,1 \% >

77

Family 3b

Defining equations:

a_10=a-11=0, ap—1a1,1 = 2ap,1a1,-1, I

33,,1 =4a_1,131,-1, d0,-130,1 = 231,14-1,-1 /% 5
121

Again, all families have D-finite generating functions.



Defining equations:

3
ai,—1a-11 = a1,0a-1,0, 6 &Y 5
ay1 =ap1 =ap,-1=4a-1,-1=0 4

Defining equations:

4
a1,1a-1,-1 = 31,08-1,0, 6 74 5
a;,—1=ap1 =ap,-1=a-11=0 3
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ay1 =ap1 =ap,-1=4a-1,-1=0 4
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4
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Walks in the Quarter Plane with Multiple Steps
LThe Classification

Ds

Family 4a
Defining equations:

d1,-14-1,1 = 41,04—-1,0,
ai1 =ao1=4aop,-1=4a-1,-1=0

Family 4b
Defining equations:

a;1a_1,-1 = a1,0a-1,0.
a;,—1=ap1 =ap,-1=a-11=0

Both families have D-finite generating functions.
Family 4b models have algebraic GFs
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We can find families as in the other cases, but are not sure we
have the full characterization.

2 1 2
1 1 1 1 1
1&[{2 2}[?1 2%1
1 1 1 1
1 2 1

These models do not fit into any of the previous families.

Their GFs are (probably*) algebraic.
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Walks in the Quarter Plane with Multiple Steps
LThe Classification

What next?

Finite group <= D-finite generating function?
This is true in the multiplicity 1 case. It seems that it is true
here as well. Is there a combinatorial proof?

Are there models whose groups are larger than Dig?

We've done calculations for multiplicity 4 and 5 and found
nothing bigger.

Is it possible to do a similar classification in the 3d case?

Prove that the remaining 28,850 “interesting” cases have
non-D-finite GFs.
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