Computability and Enumeration

Igor Pak, UCLA

Joint work with Scott Garrabrant

FPSAC, KAIST, Daejeon, South Korea

July 8, 2015
Let’s count...

The number of ways to approach mathematics:

(1) **Adventure**

(2) **Beauty**

(3) **Order**

...

(4) **Complexity** ← clue to this story!
Questions about combinatorial sequences

Let \(\{a_n\} \) be a combinatorial sequence, e.g.

- \(a_n \) = number of graphs on \(n \) vertices, s.t. (*)
- \(a_n \) = number of permutations in \(S_n \), s.t. (**)
- \(a_n \) = number of Dyck paths of length \(2n \), s.t. (***)

Question 1: Does \(\mathcal{A}(t) = \sum_n a_n t^n \) have a formula?

Question 2: Can \(a_n \) be computed efficiently?
Classes of combinatorial sequences

1) **rational** g.f. \(A(t) = P(t)/Q(t), \ P, Q \in \mathbb{Z}[t] \)
 e.g. \(a_n = \text{Fib}(n), \ A(t) = 1/(1 - t - t^2) \)

2) **algebraic** g.f. \(c_0 A^k + c_1 A^{k-1} + \ldots + c_k = 0, \ c_i(t) \in \mathbb{Z}[t] \)
 e.g. \(a_n = \text{Cat}(n), \ A(t) = (1 - \sqrt{1 - 4t})/2t \)

3) **D-finite** g.f. \(c_0 A + c_1 A' + \ldots + c_k A^{(k)} = 0, \ c_i(t) \in \mathbb{Z}[t] \)
 e.g. \(a_n = \# \text{involutions in } S_n, \ a_n = a_{n-1} + (n - 1) \cdot a_{n-2} \)
 Sequences \(\{a_n\} \) are called **P-recursive**.

4) **ADE** g.f. \(Q(t, A, A', \ldots, A^{(k)}) = 0, \ Q \in \mathbb{Z}[t, x_0, x_1, \ldots, x_k] \)
 e.g. \(a_n = \# \{\sigma(1) < \sigma(2) > \sigma(3) < \ldots \in S_n\}, \ A' = A^2 + 1 \)
Permutation classes

Permutation $\sigma \in S_n$ contains $\omega \in S_k$ if M_ω is a submatrix of M_σ. Otherwise, σ avoids ω. Such ω are called patterns.

For example, (5674123) contains (321) but avoids (4321).

\[
\begin{pmatrix}
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot
\end{pmatrix}
\begin{pmatrix}
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot
\end{pmatrix}.
\]

For a set of patterns $\mathcal{F} \subset S_k$, denote $\mathcal{C}_n(\mathcal{F})$ the set of $\sigma \in S_n$ avoiding each $\omega \in \mathcal{F}$. Let $C_n(\mathcal{F}) = |\mathcal{C}_n(\mathcal{F})|$.
Notable examples:

(1) \(C_n(123) = C_n(213) = \text{Cat}(n) \) [MacMahon, 1915] and [Knuth, 1973].

(2) \(C_n(123, 132, 213) = \text{Fib}(n + 1) \) [Simion, Schmidt, 1985]

(3) \(C_n(2413, 3142) = \text{Schröder}(n) \) [Shapiro, Stephens, 1991]

(4) \(C_n(1234) = C_n(2143) \) has D-finite g.f. [Gessel, 1990]

(5) \(C_n(1342) \) has algebraic g.f. [Bona, 1997]

(6) \(C_n(3412, 4231) \) has algebraic g.f. [Bousquet-Mélou, Butler, 2007] counts the number of smooth Schubert varieties \(X_\sigma, \sigma \in S_n \) [Lakshmibai, Sandhya, 1990], see also [Abe, Billey, 2014].
Main result

Noonan–Zeilberger Conjecture:
For every $\mathcal{F} \subset S_k$, the sequence $\{C_n(\mathcal{F})\}$ is P-recursive.
(Equivalently, the g.f. for $\{C_n(\mathcal{F})\}$ is D-finite).

Theorem 1. [Garrabrant, P., 2015+]

NZ Conjecture is false. To be precise, there is a set $\mathcal{F} \subset S_{80}$, $|\mathcal{F}| < 31000$, s.t. $\{C_n(\mathcal{F})\}$ is not P-recursive.
A bit of history

• First stated as an open problem by Gessel (1990)

• Upgraded to a conjecture and extended to count copies contained of each pattern, by Noonan and Zeilberger (1996)

• Atkinson reduced the extended version to the original (1999)

• In 2005, Zeilberger changes his mind, conjectures that \(\{C_n(1324)\} \) is not P-recursive [this is still open]

• In 2014, Zeilberger changes his mind half-way back, writes: “if I had to bet on it now I would give only a 50% chance”.

As bad as it gets!

Main Lemma [here X is LARGE, to be clarified below]
Let $\xi : \mathbb{N} \rightarrow \mathbb{N}$ be a function in X. Then there exist $k, a, b \in \mathbb{N}$ and sets of patterns $\mathcal{F}, \mathcal{F}' \subset S_k$, s.t.
\[
\xi(n) = C_{an+b}(\mathcal{F}) - C_{an+b}(\mathcal{F}') \mod 2 \text{ for all } n.
\]

Note: Here mod 2 can me changed to any mod p but cannot be completely removed. For example, $C_n(\mathcal{F}) = 0$ implies $C_{n+1}(\mathcal{F}) = 0$, which does not hold for functions $\xi \in X$.

Theorem 2. [Garrabrant, P., 2015+]
The problem whether $C_n(\mathcal{F}) - C_n(\mathcal{F}') = 0 \mod 2$ for all $n \geq 1$, is undecidable.
Not convinced yet?

Corollary 1. For all k large enough, there exists $\mathcal{F}, \mathcal{F}' \subset S_k$ such that the smallest n for which $C_n(\mathcal{F}) \neq C_n(\mathcal{F}') \mod 2$ satisfies

$$n > 2^{2^{2^{2^k}}}.$$

Corollary 2. There exist two finite sets of patterns \mathcal{F} and \mathcal{F}', such that the problem of whether $C_n(\mathcal{F}) = C_n(\mathcal{F}') \mod 2$ for all $n \in \mathbb{N}$, is independent of ZFC.
Computational Complexity Classes

⊕P = parity version of the class of counting problem #P
 e.g. ⊕Hamiltonian cycles in $G \in \oplus P$

$P \neq \oplus P$ is similar to $P \neq NP$
In fact, $P = \oplus P$ implies $PH = NP = BPP$ [by Toda’s theorem]

$EXP = \text{exponential time}$
⊕$EXP = \text{exponential time version of } \oplus P$
 e.g. ⊕Hamiltonian 3-connected graphs on n vertices $\in \oplus EXP$

$EXP \neq \oplus EXP$ is similar to $P \neq \oplus P$
believed to be correct for more technical CC reasons,
Complexity Implications

Theorem 3. [Garrabrant, P., 2015+]
If $\text{EXP} \neq \oplus\text{EXP}$, then there exists a finite set of patterns \mathcal{F},
such that the sequence $\{C_n(\mathcal{F})\}$ cannot be computed in time
polynomial in n.

Remark 1: All sequences with D-finite g.f. can be computed in
time polynomial in n.

Remark 2: This also answers to Wilf’s question (1982):
*Can one describe a reasonable and natural family of combinatorial
enumeration problems for which there is provably no polynomial-in-n time formula or algorithm to compute $f(n)$?*
Two-stack Automata

In the Main Lemma, $X = \{\xi_\Gamma\}$, where $\xi_\Gamma(n) =$ number of balanced paths of some two-stack automaton Γ.

Here $\xi(1) = \xi(2) = \xi(3) = 0$, $\xi(4) = 1$, $\xi(5) = 0$, $\xi(6) = 1$.

Note: Two-stack automata are as powerful as Turing machines.
How not to be P-recursive

Lemma 1. Let \(\{a_n\} \) be a P-recursive sequence, and let \(\overline{\alpha} = (\alpha_1, \alpha_2, \ldots) \in \{0,1\}^\infty \), \(\alpha_i = a_i \mod 2 \). Then there is a finite binary word \(w \in \{0,1\}^* \) which is NOT a subword of \(\overline{\alpha} \).

Lemma 2. There is a two-stack automaton \(\Gamma \) s.t. the number of balanced paths \(\xi_{\Gamma}(n) \) is given by the sequence

\[
0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, \ldots
\]

Now Lemma 1, Lemma 2 and Main Lemma imply Theorem 1.
Main Lemma: outline

(0) Allow general **partial patterns** (rectangular 0-1 matrices with no two 1’s in the same row or column).

(1) Fix a sufficiently large “alphabet” of “incomparable” matrices. Specifically, we take all simple 10-permutations which contain (5674123). Arbitrarily name them \(P, Q, B, B', E, T_1, \ldots, T_v, Z_1, \ldots, Z_m \).

(2) Thinking of \(T_i \)’s as vertices of \(\Gamma \) and \(Z_j \) as variables \(x_p, y_q, \) select block matrices \(\mathcal{F} \) to simulate \(\Gamma \). Let \(\mathcal{F}' = \mathcal{F} \cup \{ B, B' \} \).

(3) Define involution \(\Psi \) on \(C_n(\mathcal{F}) \setminus C_n(\mathcal{F}') \) by \(B \leftrightarrow B' \). Check that fixed points of \(\Psi \) are in bijection with balanced paths in \(\Gamma \).
Sample of forbidden matrices in \mathcal{F}:

\[
\begin{pmatrix}
\cdots & T_i & \cdots \\
L & \cdots & \cdots & \cdots & T_j & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & Z_p \\
\cdots & \cdots & \cdots & \cdots & B' & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & T_k \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{pmatrix}
\quad \begin{pmatrix}
\cdots & T_i & \cdots \\
L & \cdots & \cdots & \cdots & T_2 & \cdots \\
\cdots & \cdots & \cdots & \cdots & E & \cdots \\
\cdots & \cdots & \cdots & \cdots & B' & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\

\end{pmatrix}
\quad \begin{pmatrix}
\cdots & T_j \\
Z_p & \cdots \\
\cdots & \cdots \\
\cdots & Z_q & \cdots \\
\end{pmatrix}
\]

Final count:
Example

\[M = \begin{pmatrix} \bullet & \bullet & \bullet & T_1 & \bullet \end{pmatrix} \]
Notes on the proof

(i) We use exactly 6854 partial patterns.

(ii) Automaton Γ in Lemma 2 uses 31 vertices, which is why the alphabet has size 10×10 only.

(iii) The largest matrix in \mathcal{F} has 8×8 blocks, which is why Theorem 1 has permutations in S_{80}.

(iv) Proof of Lemma 1 has 2 paragraphs, but it took over a year of hard work to state. Natural extensions remain open.

Conjecture 0. [Garrabrant, P.] Let $\overline{\alpha}$ be as in Lemma 1. Then $\overline{\alpha}$ has $O(n)$ subwords of length n.
The non-ADE extension

Theorem 1′. [Garrabrant, P., in preparation]
There is a set $\mathcal{F} \subset S_{80}$, s.t. the g.f. for $\{C_n(\mathcal{F})\}$ is not ADE.

Lemma 1′. Let $\{a_n\}$ be an integer sequence, and let $\{n_i\}$ be the sequences of indices with odd a_n. Suppose

1) for all $b, c \in \mathbb{N}$, there exists k such that $n_k = b \mod 2^c$,
2) $n_k/n_{k+1} \to 0$ as $k \to \infty$.

Then the g.f. for $\{a_n\}$ is not ADE.

Corollary. Let $\{a_n\}$ be an integer sequence, s.t. a_n is odd if only if $n = k! + k$, for some k. Then the g.f. for $\{a_n\}$ is not ADE.

Note: cf. EC2, Exc. 6.63c.
First prequel: Wang tilings

Long and classical story going back to 1960s (Wang, Berger, Robinson, etc.) Key result: tileability of the plane with fixed set of Wang tiles is undecidable. Delicate part: ensuring that the “seed tile” must be present in a tiling. This is what we do by introducing \mathcal{F}'.
Second prequel: Kontsevich’s problem

Let G be a group and $\mathbb{Z}[G]$ denote its group ring. Fix $u \in \mathbb{Z}[G]$. Let $a_n = [1]u^n$, where $[g]u$ denote the value of u on $g \in G$. In 2014, Maxim Kontsevich asked whether $\{a_n\}$ is always P-recursive when $G \subseteq \text{GL}(k, \mathbb{Z})$.

Theorem 4. [Garrabrant, P., 2015+]
There exists an element $u \in \mathbb{Z}[\text{SL}(4, \mathbb{Z})]$, such that the sequence $\{[1]u^n\}$ is not P-recursive.

Note: Proof uses the same Lemma 1(!)
When $G = \mathbb{Z}^k$ or $G = F_k$, the sequence $\{a_n\}$ is known to be P-recursive for all $u \in \mathbb{Z}[G]$ (Haiman, 1993).
Open problems:

Conjecture 1. The Wilf-equivalence problem of whether $C_n(F_1) = C_n(F_2)$ for all $n \in \mathbb{N}$ is undecidable.

Conjecture 2. For forbidden sets with a single permutation $|F| = |F'| = 1$, the Wilf-equivalence problem is decidable.

Conjecture 3. Sequence $\{C_n(1324)\}$ is not P-recursive.

Conjecture 4. There exists a finite set of patterns F, s.t. computing $\{C_n(F)\}$ is $\#\text{EXP}$-complete, and computing $\{C_n(F) \mod 2\}$ is $\oplus\text{EXP}$-complete.
Grand Finale:

A story how Doron Zeilberger lost $100.
Thank you!