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Permutation Statistics

Let σ = a1a2 · · · an be a permutation,

e.g. σ = 3712645

Inv(σ) = {(ai, aj) : i < j, ai > aj}, inv(σ) = |Inv(σ)|.
and coinv(σ) =

(
n
2

)
− inv(σ).

Inv(σ) = {31, 32, 71, 72, 76, 74, 75, 64, 65}, inv(σ) = 9,
coinv(σ) = 12

Des(σ) = {i : ai > ai+1, 1 ≤ i < n}, des(σ) = |Des(σ)|.

Des(σ) = {2, 5}, des(σ) = 2.

maj(σ) =
∑

i∈DES(σ)

i =
∑
i

des(aiai+1 · · · an).

maj(σ) = 7
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Matchings: crossings and nestings

t t t t t t t t
cr2(α) = 1, ne2(α) = 3.

Let
Ln(p, q) =

∑
α∈M(2n)

pcr2(α)qne2(α),

Theorem (Touchard, Riordan, Kasraoui & Zeng)∑
n≥0

Ln(p, q)zn =
1

1− z

1− [2]p,qz

1−
[3]p,qz

...
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If we fix the sets of minimal elements and maximal elements,

r r r r r r r r r r r r
r r r r r r r r r r r r

∑
M

pcr2(M)qne2(M) = (p+ q)(p+ q).

In general, it is always a product of (p, q)-integers, where
[n]p,q = pn−1 + pn−2q + · · ·+ pqn−2 + qn−1.
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Problem 1.

A crossing/nesting with edges (i1, j1), (i2, j2) is:{
odd if i1 is odd
even if i1 is even

Observation

∑
M

podd cr2+even ne2qeven cr2+odd ne2 =
∑
M

pcr2(M)qne2(M)

7 / 43



Three Motivating Problems
The Model of Fillings of Polyominoes

Combinatorial Statistics
More General Shapes

Problem 2.

A crossing with edges (i1, j1), (i2, j2) is:{
small if i2 + j2 ≤ 2n;
large otherwise

A nesting with edges (i1, j1), (i2, j2) is{
small if i2 + j1 ≤ 2n;
large otherwise

Back

t t t tj j t t t tj j
Observation

∑
M

psmall cr2+large ne2qlarge cr2+small ne2 =
∑
M

pcr2(M)qne2(M)
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Problem 3.

A major index for matching:

v v v v v v v v
1 2 3 4 5 6 7 8

4
1

3 2

sequence σi 432 132 32 2

pmaj(M) :=
∑
i

des(σi).

[Chen, Gessel, Y & Yang 2008]: pmaj has the same distribution
as cr2.
Question: Foata-type transformation?
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2. A Combinatorial Model
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Fillings of polyominoes

Polyomino: a finite subset of Z2, represented by square cells;
each cell is assigned a natural number.

01-fillings of rectangles: Permutations and Words

Triangular shape: graphs on [n]

e.g. σ = 4132

1

1
1

1
1 2 3 4

1

2

3

4

1 2

34

5

5 4 3 2

1

2

3

4

1 1 0 2
0 1 3
0 1
2
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Ferrers diagrams (Backelin, West & Xin; Krattenthaler, de
Mier): Graphs with given degree sequence, matchings, set
partitions with given MIN/ MAX block-elements, rook
placements

Stack polyominoes (Jonsson; Jonsson & Welker): pattern
avoidance of set partitions (Jeĺınek & Mansour)
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Moon polyominoes

convex any column or row is connected.
intersection-free Every two rows are comparable, i.e., the
column-coordinates of the longer one cover those of the shorter
one.
moon polyomino (L-connected) a convex and intersection-free
polyomino ( Rubey, Kasraoui,... )

We consider 01-fillings.
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A combinatorial hierarchy

permutation/word ⊆ matching/set partitions ⊆ graphs

⊆ Ferrers diagrams ⊆ stack polyominoes

⊆ moon polyominoes

⊆ more general polyominoes

Allow various approaches and techniques, e.g.

fix the polyomino and change the fillings

transform the polyominoes

bijection, induction,

tableaux operations ...
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Inversion: basic correspondences

inversion/coinversion in permutations
⇐⇒ crossings/nestings of two edges in matchings
⇐⇒ northeast/southeast chains of size 2 in 01-fillings

1

1 1

1

Denote by ne2(M) and se2(M) the numbers of ne-/se-chains of
size 2 in a filling M .
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A nice theorem

Given s = (s1, . . . , sn) ∈ Nn and e = (e1, . . . , em) ∈ {0, 1}m.
Let F(M, s, e) be the set of 01-fillings of M with row-sum s
and column-sum e.

Theorem (Kasraoui 2010)

∑
M∈F(M,s,e)

pne2(M)qse2(M) =
∑

M∈F(M,s,e)

qne2(M)pse2(M) =

n∏
i=1

[
hi
si

]
p,q

Remark

1 Not true if allow arbitrary row sum and arbitrary column
sum

2 Not true if not convex or intersection-free
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It contains results on

permutations:
∑

π∈Sn
pinv(π)qcoinv(π) = [n]p,q!.

matchings [de Sainte-Catherine’83]

set partitions [Kasraoui & Zeng’06 ]

crossings and alignments for permutation [Corteel’07]

linked partitions [Chen, Wu & Y’08]
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A mixed variant

Bicolor the rows of M and mix the 2-chains by the
position of the top cell.

d

b
a

f
e

c

Define top-mixed statistics

α(M): 1
1 or 1

1 β(M): 1
1 or 1

1

α(M) = 3 with chains ef, ae, af ;
β(M) = 4 with chains be, bf, cd, ce.

19 / 43
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Over F(M, s, e)

Theorem (Chen, Wang, Y & Zhao 2010)

The joint distribution (α(M), β(M)) is always symmetric and
independent of the bi-coloring. In particular,∑

M

pα(M)qβ(M) =
∑
M

pne2(M)qse2(M)

Also true if one mixes by the bottom cell, or bi-coloring
columns of M.
This explains Problem 1. Problem 1

20 / 43
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Charged polyominoes

Equip with M a charge function C :M→ {±1}.
For a 2× 2 submatrix S of M, set sgn(S) as the charge of its
lower-right corner.

Definition

A chain with the support matrix S is positive with respect to C
if it is

1 a northeast chain with sgn(S) = 1, or

2 a southeast chain with sgn(S) = −1.

Otherwise, the chain is negative.
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1

1 + 1

1

−

(a) Positive chains

1

1 − 1

1

+

(b) Negative chains

Conjecture

Then the distribution of (posC(M), negC(M)) does not depend
on the charge function C. Consequently,∑

M∈F(M,s,e)

pposC(M)qnegC(M) =
∑

M∈F(M,s,e)

pne2(M)qse2(M).

22 / 43
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Not always!

Theorem (Wang & Y 2013)

The conjecture is true if the polyomino is top aligned or left
aligned.

This explains Problem 2.

In general,

+ + −

+ + +

+ +
∑

M
pne2(M)qse2(M) = p2+2pq+q2,∑

M
pposC(M)qnegC(M) = 2p2+2q2.

23 / 43
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The restrictive positivity

For a cell X ∈M, define RX , the box of X, to be the widest
rectangle contained in M whose lower right corner is X.

X

A 2× 2 submatrix is restrictive if it is contained in the box of
its lower right corner.

24 / 43
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Definition

Let M be a 01-filling of a charged moon polyomino M with a
charge function C. A chain with the support matrix S is
restrictively positive with respect to C if it is

1 a northeast chain with sgn(S) = 1 or not restrictive,

2 a southeast chain with sgn(S) = −1 and restrictive.

Otherwise, the chain is restrictively negative.

25 / 43
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Symmetry in the general case

Let posC(M) and negC(M) be the numbers of restrictively
positive chains and restrictively negative chains of M with
respect to C. Set

FC(p, q) =
∑

M∈F(M,s,e)

pposC(M)qnegC(M).

Theorem (Wang & Y 2013)

The bi-variate generating function FC(p, q) does not depend on
the charge function C. Consequently,

FC(p, q) = F+(p, q) =
∑

M∈F(M,s,e)

pne2(M)qse2(M).
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Idea of the proofs:

1 In a rectangle shape, establish a bijection between fillings
while changing the color of one row, or the charge of one
cell.

2 In general, gradually change the bi-coloring to a single
coloring, or the charge function to all positive.

27 / 43
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The major index

Goal: A statistic that can be defined in a uniform way on
permutations / matchings / set partitions, which specializes to
the major index on permutations.

Theorem (Chen, Poznanović, Y & Yang 2010)

The major index can be extended to 01-fillings in F(M, e, s). It
has the same distribution as ne2.
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Definition of the major index

Let M be a top-aligned stack polyomino. Let M be a filing of
M with at most one 1 in each row.

If M is a rectangle,

des(M) := #ne-chains formed by 1s in adjacent nonempty rows.

Let M(ri) be the maximal rectangle with bottom row ri.

Define

maj(M) :=

n∑
i=1

des(M(ri)).
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An example

1

1

1

1

1

1

des(M(r1)) = 0.

des(M(r2)) = 0.

des(M(r3)) = 1.

des(M(r4)) = 1.

des(M(r5)) = 2.

des(M(r6)) = 1.
maj(M)=5.

In general, maj(M) is defined as an alternating sum.

maj(M) :=
∑
i

maj(Ri)−
∑
i

maj(Ri ∩Ri+1)

where R1, . . . Rk are maximal rectangles.
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A Foata-type bijection

Theorem

maj(M) has the same distribution as ne2(M).

Define a bijection φ : F(M, e, s)→ F(M, e, s) recursively
such that ne2(φ(M)) = maj(M).

1 If M has only one row, φ(M) = M .
2 If M has more than one row

1 M1 = remove the 1st row from M.
2 Inductive step N1 = φ(M1)
3 Modify N1 to get N2

4 φ(M) = add the 1st row back to N2.

31 / 43



Three Motivating Problems
The Model of Fillings of Polyominoes

Combinatorial Statistics
More General Shapes

inversions
mixed statistics
charged polyominoes
the major index
descents

[CPYY] Foata-type transformation can be defined on fillings of
left-aligned stack polyominoes by a set of row operations.

For general polyominoes: move shorter columns to the right.

→

M N

32 / 43
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Construct a bijection from fillings of M to N that
preserves the major index.

Construct a bijection from fillings of M to N that
preserves ne2.

(This answers problem 3.)
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A little results on descent

Recall on permutations: fix D = {d1, d2, . . . , dk} ⊂ [n− 1] and
let

β(D, q) =
∑

σ:Des(σ)=D

qinv(σ), α(D, q) =
∑

σ:Des(σ)⊆D

qinv(σ)

Then

Theorem

α(D; q) =

[
n

d1, d2 − d1, . . . , n− dk

]
q

,

and

β(D; q) = det

[[
n− di

dj+1 − di

]
q

]
.
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Restricted fillings in Ferrers diagram

Let F be a Ferrers diagram with row lengths r1 ≤ r2 ≤ · · · ≤ rn.

Theorem (Song & Y 2012)

αF (D, q) =

k∏
i=0

LP (~si; q), βF (D, q) = det[fi,j+1]

where f(i, j) = LP (~si+1, . . . , ~sj ; q) for i ≤ j.

Here si = ri − i+ 1, and LP (~s; q) is the area-enumerator of
lattice paths with right boundary ~s.

an extension of Stanley’s inv q-analog of G.F. of Eulerian
polynomials

a new G.F. of descent polynomials for permutations with
maximal drop size, [Chung, Claesson, Dukes, Graham’10].

35 / 43



Three Motivating Problems
The Model of Fillings of Polyominoes

Combinatorial Statistics
More General Shapes

4. More General Shapes?
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What happens if one swaps the rows of the polyomino?

Idea: extend to polyominoes that allow arbitrary permutations
of rows.
Layer Polyomino: intersection-free and row-convex, but
not necessarily column-convex.
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Regular chains in fillings of layer polyomino

A 2× 2 submatrix

S = {(i1, j1), (i1, j2), (i2, j1), (i2, j2) ∈ L : i1 < i2, j1 < j2}.

ne-chain: S with (i1, j2), (i2, j1) filled with 1.
se-chain: S with (i1, j1), (i2, j2) filled with 1.

a

b
c

d

e
f

4 ne-chains: bd, cd, ad, ef 2 se-chains: df, de
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Main result on Layer Polyomino L
Fix row sum s and column sum e.

Theorem (Phillipson, Y & Yeh 2013, 2015)

1 If either s or e is a 01-vector, then permuting rows of L
does not change the distribution of (ne2, se2).
Consequently, the distribution of (ne2, se2) is symmetric.

2 For arbitrary s, e, the distribution of (ne2, se2) may not be
symmetric.

Cannot get rid of all convexity.
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Strong Chains

Definition

An ne/se-chain is strong if the minimal rectangle containing it
is also in L.

a

b
c

d

e
f

3 strong ne-chains: bd, cd, ef , no strong se-chains.
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Let ne22 and se22 be the number of strong ne-and se-chains of
length 2. Then

Theorem (Phillipson, Y & Yeh 2013, 2015)

1 (ne22 , se
2
2 ) is not preserved under permutations of rows

2 The distribution of (ne22 , se
2
2 ) is symmetric if either

row-sum or column-sum is a 01-vector.

3 An involution for (2) is constructed.

4 Fix both row sum and column sum in N, the distribution of
ne22 and se22 may not be the same; however

5 there is a bijection between fillings with no strong ne-chains
to fillings with no strong se-chains, for both 01-fillings and
N-fillings.
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How about ne(M), the size of maximal northeast
chains?

Exchanging rows WILL change the distribution of this statistic!

One needs more restrictions on layer polyomino.
Please come to the talk at 12:00.
[Poznanović & Yan]:

Maximal increasing sequences in fillings of
almost-moon polyominoes
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