Sign variation, the Grassmannian, and total positivity

arXiv:1503.05622
Slides available at math.berkeley.edu/~skarp

Steven N. Karp, UC Berkeley

FPSAC 2015
KAIST, Daejeon
The Grassmannian $\text{Gr}_{k,n}$

- The Grassmannian $\text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n.
The Grassmannian $\text{Gr}_{k,n}$

The Grassmannian $\text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n.

$$V := \begin{pmatrix} 0 \\ 1 \\ 0 \\ -4 \\ -3 \end{pmatrix} \in \text{Gr}_{2,4}$$
The Grassmannian $\text{Gr}_{k,n}$

The Grassmannian $\text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n.

Given $V \in \text{Gr}_{k,n}$ in the form of a $k \times n$ matrix, for $I \in \binom{[n]}{k}$ let $\Delta_I(V)$ be the $k \times k$ minor of V with columns I.

The Plücker coordinates $\Delta_I(V)$ are well-defined up to multiplication by a global nonzero constant.

We say that $V \in \text{Gr}_{k,n}$ is totally nonnegative if $\Delta_I(V) \geq 0$ for all $I \in \binom{[n]}{k}$.

Denote the set of such V by $\text{Gr}_{\geq 0}^{k,n}$, called the totally nonnegative Grassmannian.

$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & -2 \end{bmatrix} \in \text{Gr}_{2,4}$

$V := \begin{bmatrix} 0 & 1 & 3 & 2 \\ 1 & 0 & -4 & -3 \end{bmatrix} \in \text{Gr}_{2,4}$
The Grassmannian $\text{Gr}_{k,n}$

The Grassmannian $\text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n.

$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \text{Gr}_{2,4}$
The Grassmannian $\text{Gr}_{k,n}$

- The $\text{Grassmannian} \text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n.

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \text{Gr}_{2,4}$$

- Given $V \in \text{Gr}_{k,n}$ in the form of a $k \times n$ matrix, for $I \in \binom{[n]}{k}$ let $\Delta_I(V)$ be the $k \times k$ minor of V with columns I.

Steven N. Karp (UC Berkeley)
Sign variation, the Grassmannian, and total positivity
FPSAC 2015
2 / 9
The Grassmannian $\text{Gr}_{k,n}$

- The Grassmannian $\text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n.

$$V := \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \text{Gr}_{2,4}$$

$$\Delta\{1,2\} = 1, \Delta\{1,3\} = 3, \Delta\{1,4\} = 2, \Delta\{2,3\} = 4, \Delta\{2,4\} = 3, \Delta\{3,4\} = 1$$

- Given $V \in \text{Gr}_{k,n}$ in the form of a $k \times n$ matrix, for $I \in \binom{[n]}{k}$ let $\Delta_I(V)$ be the $k \times k$ minor of V with columns I.

The Grassmannian $\text{Gr}_{k,n}$

The Grassmannian $\text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n. Given $V \in \text{Gr}_{k,n}$ in the form of a $k \times n$ matrix, for $I \in \binom{[n]}{k}$ let $\Delta_I(V)$ be the $k \times k$ minor of V with columns I. The Plücker coordinates $\Delta_I(V)$ are well-defined up to multiplication by a global nonzero constant.

$$V := \begin{bmatrix} 1, 0, -4, -3 \\ 0, 1, 3, 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \\ 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \text{Gr}_{2,4}$$

$\Delta_{\{1,2\}} = 1, \Delta_{\{1,3\}} = 3, \Delta_{\{1,4\}} = 2, \Delta_{\{2,3\}} = 4, \Delta_{\{2,4\}} = 3, \Delta_{\{3,4\}} = 1$
The Grassmannian $\text{Gr}_{k,n}$

- The *Grassmannian* $\text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n.

![Diagram of Grassmannian](image)

$V := \begin{pmatrix} 1, 0, -4, -3 \\ 0, 1, 3, 2 \end{pmatrix}$

$= \begin{bmatrix} 1 & 0 & -4 & -3 \\ 0 & 1 & 3 & 2 \end{bmatrix} \in \text{Gr}_{2,4}$

$= \begin{bmatrix} 1 & 1 & -1 & -1 \\ 0 & 1 & 3 & 2 \end{bmatrix}$

$\Delta_{\{1,2\}} = 1, \Delta_{\{1,3\}} = 3, \Delta_{\{1,4\}} = 2, \Delta_{\{2,3\}} = 4, \Delta_{\{2,4\}} = 3, \Delta_{\{3,4\}} = 1$

- Given $V \in \text{Gr}_{k,n}$ in the form of a $k \times n$ matrix, for $I \in \left(\begin{bmatrix} n \end{bmatrix} \right)_k$ let $\Delta_I(V)$ be the $k \times k$ minor of V with columns I. The *Plücker coordinates* $\Delta_I(V)$ are well-defined up to multiplication by a global nonzero constant.

- We say that $V \in \text{Gr}_{k,n}$ is *totally nonnegative* if $\Delta_I(V) \geq 0$ for all $I \in \left(\begin{bmatrix} n \end{bmatrix} \right)_k$. Denote the set of such V by $\text{Gr}_{k,n}^{\geq 0}$, called the *totally nonnegative Grassmannian*.
The Grassmannian $\text{Gr}_{k,n}$

The Grassmannian $\text{Gr}_{k,n}$ is the set of k-dimensional subspaces V of \mathbb{R}^n.

Given $V \in \text{Gr}_{k,n}$ in the form of a $k \times n$ matrix, for $I \in \binom{[n]}{k}$ let $\Delta_I(V)$ be the $k \times k$ minor of V with columns I. The Plücker coordinates $\Delta_I(V)$ are well-defined up to multiplication by a global nonzero constant.

We say that $V \in \text{Gr}_{k,n}$ is totally nonnegative if $\Delta_I(V) \geq 0$ for all $I \in \binom{[n]}{k}$. Denote the set of such V by $\text{Gr}_{k,n}^{\geq 0}$, called the totally nonnegative Grassmannian.
For $x \in \mathbb{R}^n$, let $\text{var}(x)$ be the number of sign changes in the sequence x_1, x_2, \cdots, x_n, ignoring any zeros.
For $x \in \mathbb{R}^n$, let $\text{var}(x)$ be the number of sign changes in the sequence x_1, x_2, \cdots, x_n, ignoring any zeros.

$$\text{var}((1, -4, 0, -3, 6, 0, -1))$$
For $x \in \mathbb{R}^n$, let $\text{var}(x)$ be the number of sign changes in the sequence x_1, x_2, \ldots, x_n, ignoring any zeros.

$$\text{var}((1, -4, 0, -3, 6, 0, -1)) = \text{var}((1, -4, -3, 6, -1))$$
Sign variation

For $x \in \mathbb{R}^n$, let $\text{var}(x)$ be the number of sign changes in the sequence x_1, x_2, \cdots, x_n, ignoring any zeros.

$$\text{var}((1, -4, 0, -3, 6, 0, -1)) = \text{var}((1, -4, -3, 6, -1))$$
Sign variation

For $x \in \mathbb{R}^n$, let $\text{var}(x)$ be the number of sign changes in the sequence x_1, x_2, \cdots, x_n, ignoring any zeros.

\[\text{var}((1, -4, 0, -3, 6, 0, -1)) = \text{var}((1, -4, -3, 6, -1)) = 3 \]
For $x \in \mathbb{R}^n$, let $\text{var}(x)$ be the number of sign changes in the sequence x_1, x_2, \ldots, x_n, ignoring any zeros. (We define $\text{var}(0) := -1$.)

$$\text{var}((1, -4, 0, -3, 6, 0, -1)) = \text{var}((1, -4, -3, 6, -1)) = 3$$
Sign variation

- For $x \in \mathbb{R}^n$, let $\text{var}(x)$ be the number of sign changes in the sequence x_1, x_2, \cdots, x_n, ignoring any zeros. (We define $\text{var}(0) := -1$.)

$$\text{var}((1, -4, 0, -3, 6, 0, -1)) = \text{var}((1, -4, -3, 6, -1)) = 3$$

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let $V \in \text{Gr}_{k,n}$. Then V is totally nonnegative iff $\text{var}(x) \leq k - 1$ for all $x \in V$.

Steven N. Karp (UC Berkeley) Sign variation, the Grassmannian, and total positivity FPSAC 2015 3 / 9
Sign variation

For \(x \in \mathbb{R}^n \), let \(\text{var}(x) \) be the number of sign changes in the sequence \(x_1, x_2, \ldots, x_n \), ignoring any zeros. (We define \(\text{var}(0) := -1 \).)

\[
\text{var}((1, -4, 0, -3, 6, 0, -1)) = \text{var}((1, -4, -3, 6, -1)) = 3
\]

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let \(V \in \text{Gr}_{k,n} \). Then \(V \) is totally nonnegative iff \(\text{var}(x) \leq k - 1 \) for all \(x \in V \).

- e.g. \(V := \begin{pmatrix} (1, 0, -4, -3) \\ (0, 1, 3, 2) \end{pmatrix} \in \text{Gr}_{2,4}^{\geq 0} \).
Sign variation

For $x \in \mathbb{R}^n$, let $\text{var}(x)$ be the number of sign changes in the sequence x_1, x_2, \ldots, x_n, ignoring any zeros. (We define $\text{var}(0) := -1$.)

$$\text{var}((1, -4, 0, -3, 6, 0, -1)) = \text{var}((1, -4, -3, 6, -1)) = 3$$

Theorem (Gantmakher, Krein (1950); Schoenberg, Whitney (1951))

Let $V \in \text{Gr}_{k,n}$. Then V is totally nonnegative iff $\text{var}(x) \leq k - 1$ for all $x \in V$.

- e.g. $V := \{(1, 0, -4, -3)\} \in \text{Gr}_{2,4}^{\geq 0}$

- Note that every $V \in \text{Gr}_{k,n}$ contains a vector x with $\text{var}(x) \geq k - 1$. So, the totally nonnegative subspaces are those whose vectors change sign as few times as possible.
A history of total positivity

- Descartes's rule of signs (1637): The number of positive real zeros of a real polynomial is at most the number of sign changes of its sequence of coefficients.
Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \ldots, k$, all nonzero $j \times j$ minors of A have the same sign.
Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \cdots, k$, all nonzero $j \times j$ minors of A have the same sign.
A history of total positivity

- Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \cdots, k$, all nonzero $j \times j$ minors of A have the same sign.

 formations. The problem of characterizing such transformations was attacked by Schoenberg in 1930 with only partial success.

- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.
A history of total positivity

- Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \ldots, k$, all nonzero $j \times j$ minors of A have the same sign.

 formations. The problem of characterizing such transformations was attacked by Schoenberg in 1930 with only partial success.

- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.

A history of total positivity

- Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \ldots, k$, all nonzero $j \times j$ minors of A have the same sign.

- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.

- Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.
A history of total positivity

- Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \cdots, k$, all nonzero $j \times j$ minors of A have the same sign.

- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.

- Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.

- Aissen, Schoenberg, Whitney (1952): Let $r_1, \cdots, r_n \in \mathbb{C}$. Then r_1, \cdots, r_n are all nonnegative reals iff $s_\lambda(r_1, \cdots, r_n) \geq 0$ for all partitions λ.

Lusztig (1994) developed a theory of total positivity for G and G/P.

Fomin and Zelevinsky (2000s) defined cluster algebras.
A history of total positivity

- Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \cdots, k$, all nonzero $j \times j$ minors of A have the same sign.

- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.

- Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.

- Aissen, Schoenberg, Whitney (1952): Let $r_1, \cdots, r_n \in \mathbb{C}$. Then r_1, \cdots, r_n are all nonnegative reals iff $s_\lambda(r_1, \cdots, r_n) \geq 0$ for all partitions λ.

A history of total positivity

- Pólya (1912) asked which linear $A : \mathbb{R}^k \rightarrow \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \ldots, k$, all nonzero $j \times j$ minors of A have the same sign.

- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.

- Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.

- Aissen, Schoenberg, Whitney (1952): Let $r_1, \ldots, r_n \in \mathbb{C}$. Then r_1, \ldots, r_n are all nonnegative reals iff $s_\lambda(r_1, \ldots, r_n) \geq 0$ for all partitions λ.

- Lusztig (1994) developed a theory of total positivity for G and G/P.

- Fomin and Zelevinsky (2000s) defined cluster algebras.
A history of total positivity

- Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \cdots, k$, all nonzero $j \times j$ minors of A have the same sign.

- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.

- Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.

- Aissen, Schoenberg, Whitney (1952): Let $r_1, \cdots, r_n \in \mathbb{C}$. Then r_1, \cdots, r_n are all nonnegative reals iff $s_{\lambda}(r_1, \cdots, r_n) \geq 0$ for all partitions λ.

- Lusztig (1994) developed a theory of total positivity for G and G/P.

- Fomin and Zelevinsky (2000s) defined cluster algebras.
A history of total positivity

- Pólya (1912) asked which linear $A : \mathbb{R}^k \to \mathbb{R}^n$ satisfy $\text{var}(A(x)) \leq \text{var}(x)$ for all $x \in \mathbb{R}^k$. Schoenberg (1930) showed that for injective A, this holds iff for $j = 1, \ldots, k$, all nonzero $j \times j$ minors of A have the same sign. Formations. The problem of characterizing such transformations was attacked by Schoenberg in 1930 with only partial success.

- Gantmakher, Krein (1935): The eigenvalues of a totally positive square matrix (all whose minors are positive) are real, positive, and distinct.

- Whitney (1952): The totally positive matrices are dense in the totally nonnegative matrices.

- Aissen, Schoenberg, Whitney (1952): Let $r_1, \ldots, r_n \in \mathbb{C}$. Then r_1, \ldots, r_n are all nonnegative reals iff $s_\lambda(r_1, \ldots, r_n) \geq 0$ for all partitions λ.

- Lusztig (1994) developed a theory of total positivity for G and G/P.

- Fomin and Zelevinsky (2000s) defined cluster algebras.

- Postnikov (2006) studied $\text{Gr}_{k,n}^{\geq 0}$ from a combinatorial perspective.
How close is a subspace to being totally nonnegative?

Can we determine $\max_{x \in V} \text{var}(x)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in \text{Gr}_{k,n}$ and $m \geq k - 1$.

(i) If $\text{var}(x) \leq m$ for all $x \in V$, then $\text{var}(\Delta J \cup \{i\} (V))_{i \in J} \leq m - k + 1$ for all $J \in \binom{[n]}{k-1}$.

The converse holds if V is generic (i.e. $\Delta I (V) \neq 0$ for all I).

(ii) We can perturb V into a generic W with $\max_{x \in V} \text{var}(x) = \max_{x \in W} \text{var}(x)$.

Steven N. Karp (UC Berkeley)
How close is a subspace to being totally nonnegative?

Can we determine $\max_{x \in V} \var(x)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in \text{Gr}_{k,n}$ and $m \geq k - 1$.

Proof:

- (i) If $\var(x) \leq m$ for all $x \in V$, then $\var(\Delta_J \cup \{i\}(V)_{i \in J}) \leq m - k + 1$ for all $J \in \binom{[n]}{k-1}$.

- The converse holds if V is generic (i.e. $\Delta_I(V) \neq 0$ for all I).

- (ii) We can perturb V into a generic W with $\max_{x \in V} \var(x) = \max_{x \in W} \var(x)$.
How close is a subspace to being totally nonnegative?

Can we determine \(\max_{x \in V} \text{var}(x) \) from the Plücker coordinates of \(V \)?

Theorem (Karp (2015))

Let \(V \in \text{Gr}_{k,n} \) and \(m \geq k - 1 \).

(i) If \(\text{var}(x) \leq m \) for all \(x \in V \), then

\[
\text{var}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq m - k + 1 \quad \text{for all } J \in \binom{[n]}{k-1}.
\]

The converse holds if \(V \) is generic (i.e. \(\Delta_I(V) \neq 0 \) for all \(I \)).
How close is a subspace to being totally nonnegative?

Can we determine \(\max_{x \in V} \text{var}(x) \) from the Plücker coordinates of \(V \)?

Theorem (Karp (2015))

Let \(V \in \text{Gr}_{k,n} \) and \(m \geq k - 1 \).

(i) If \(\text{var}(x) \leq m \) for all \(x \in V \), then

\[
\text{var}((\Delta_{J \cup \{i\}}(V))_{i \not\in J}) \leq m - k + 1 \quad \text{for all } J \in \binom{[n]}{k-1}.
\]

The converse holds if \(V \) is generic (i.e. \(\Delta_I(V) \neq 0 \) for all \(I \)).

- e.g. Let \(V := \begin{bmatrix} 1 & 0 & -2 & 4 \\ 0 & 2 & 1 & 1 \end{bmatrix} \in \text{Gr}_{2,4} \) and \(m := 2 \). The fact that \(\text{var}(x) \leq 2 \) for all \(x \in V \) is equivalent to the fact that the 4 sequences

\[
(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (2, 1, 1), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (1, 4, -6),
\]

\[
(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (2, 4, -8), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1, -8, -6)
\]

each change sign at most once.
How close is a subspace to being totally nonnegative?

Can we determine \(\max_{x \in V} \text{var}(x) \) from the Plücker coordinates of \(V \)?

Theorem (Karp (2015))

Let \(V \in \text{Gr}_{k,n} \) and \(m \geq k - 1 \).

(i) If \(\text{var}(x) \leq m \) for all \(x \in V \), then

\[
\text{var}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq m - k + 1 \quad \text{for all } J \in \binom{[n]}{k-1}.
\]

The converse holds if \(V \) is generic (i.e. \(\Delta_I(V) \neq 0 \) for all \(I \)).

(ii) We can perturb \(V \) into a generic \(W \) with \(\max_{x \in V} \text{var}(x) = \max_{x \in W} \text{var}(x) \).

- e.g. Let \(V := \begin{bmatrix} 1 & 0 & -2 & 4 \\ 0 & 2 & 1 & 1 \end{bmatrix} \in \text{Gr}_{2,4} \) and \(m := 2 \). The fact that \(\text{var}(x) \leq 2 \) for all \(x \in V \) is equivalent to the fact that the 4 sequences
 \[
 (\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (2, 1, 1), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (1, 4, -6),
 (\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (2, 4, -8), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1, -8, -6)
 \]
 each change sign at most once.
How close is a subspace to being totally nonnegative?

- Can we determine $\max_{x \in V} \var(x)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in \text{Gr}_{k,n}$ and $m \geq k - 1$.

(i) If $\var(x) \leq m$ for all $x \in V$, then

$$\var((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq m - k + 1$$

for all $J \in \binom{[n]}{k-1}$.

The converse holds if V is generic (i.e. $\Delta_I(V) \neq 0$ for all I).

(ii) We can perturb V into a generic W with $\max_{x \in V} \var(x) = \max_{x \in W} \var(x)$.

- e.g. Consider $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.
How close is a subspace to being totally nonnegative?

Can we determine $\max_{x \in V} \text{var}(x)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in \text{Gr}_{k,n}$ and $m \geq k - 1$.

(i) If $\text{var}(x) \leq m$ for all $x \in V$, then

$$\text{var}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq m - k + 1 \quad \text{for all } J \in \binom{[n]}{k-1}.$$

The converse holds if V is generic (i.e. $\Delta_I(V) \neq 0$ for all I).

(ii) We can perturb V into a generic W with $\max_{x \in V} \text{var}(x) = \max_{x \in W} \text{var}(x)$.

- e.g. Consider $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$.

The 4 sequences of Plücker coordinates are

$(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (1, 0, 1), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (0, -1, 1),$

$(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (1, -1, 0), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1, 0, 1)$.
How close is a subspace to being totally nonnegative?

Can we determine \(\max_{x \in V} \var(x) \) from the Plücker coordinates of \(V \)?

Theorem (Karp (2015))

Let \(V \in \text{Gr}_{k,n} \) and \(m \geq k - 1 \).

(i) If \(\var(x) \leq m \) for all \(x \in V \), then

\[
\var((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq m - k + 1 \quad \text{for all} \ J \in \binom{[n]}{k-1}.
\]

The converse holds if \(V \) is generic (i.e. \(\Delta_I(V) \neq 0 \) for all \(I \)).

(ii) We can perturb \(V \) into a generic \(W \) with \(\max_{x \in V} \var(x) = \max_{x \in W} \var(x) \).

- e.g. Consider \[
\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
\end{pmatrix}.
\]

The 4 sequences of Plücker coordinates are:

\[
(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (1, 0, 1), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (0, -1, 1),
\]

\[
(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (1, -1, 0), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1, 0, 1).
\]
How close is a subspace to being totally nonnegative?

- Can we determine \(\max_{x \in V} \text{var}(x) \) from the Plücker coordinates of \(V \)?

Theorem (Karp (2015))

Let \(V \in \text{Gr}_{k,n} \) and \(m \geq k - 1 \).

(i) If \(\text{var}(x) \leq m \) for all \(x \in V \), then

\[
\text{var}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq m - k + 1 \quad \text{for all } J \in \binom{[n]}{k-1}.
\]

The converse holds if \(V \) is generic (i.e. \(\Delta_I(V) \neq 0 \) for all \(I \)).

(ii) We can perturb \(V \) into a generic \(W \) with \(\max_{x \in V} \text{var}(x) = \max_{x \in W} \text{var}(x) \).

- e.g. Consider

\[
\begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{bmatrix} \sim \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0.1 & 1
\end{bmatrix}.
\]

The 4 sequences of Plücker coordinates are

\[
(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (1, 0, 1, 0), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (0, 1, 0, 1),
\]

\[
(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (1, -1, 0, 1), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1, 0, 1).
\]
How close is a subspace to being totally nonnegative?

- Can we determine \(\max_{x \in V} \text{var}(x) \) from the Plücker coordinates of \(V \)?

Theorem (Karp (2015))

Let \(V \in \text{Gr}_{k,n} \) and \(m \geq k - 1 \).

(i) If \(\text{var}(x) \leq m \) for all \(x \in V \), then

\[
\text{var}(\{(\Delta_{J \cup \{i\}}(V))_{i \notin J}\}) \leq m - k + 1 \quad \text{for all } J \in \binom{[n]}{k-1}.
\]

The converse holds if \(V \) is generic (i.e. \(\Delta_I(V) \neq 0 \) for all \(I \)).

(ii) We can perturb \(V \) into a generic \(W \) with \(\max_{x \in V} \text{var}(x) = \max_{x \in W} \text{var}(x) \).

- e.g. Consider

\[
\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix} \sim \begin{bmatrix}
1 & 0 & 1 & 0 \\
0 & 1 & 0.1 & 1
\end{bmatrix}.
\]

The 4 sequences of Plücker coordinates are

\[
(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (1, 0, 1), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (0, -1, 1),
\]

\[
(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (1, -1, 0), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (0, 1, 1).
\]
How close is a subspace to being totally nonnegative?

- Can we determine $\max_{x \in V} \text{var}(x)$ from the Plücker coordinates of V?

Theorem (Karp (2015))

Let $V \in \text{Gr}_{k,n}$ and $m \geq k - 1$.

(i) If $\text{var}(x) \leq m$ for all $x \in V$, then

$$\text{var}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq m - k + 1 \quad \text{for all } J \in \binom{[n]}{k-1}.$$

The converse holds if V is generic (i.e. $\Delta_I(V) \neq 0$ for all I).

(ii) We can perturb V into a generic W with $\max_{x \in V} \text{var}(x) = \max_{x \in W} \text{var}(x)$.

- e.g. Consider

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0.1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & 0 & 1 & 0.01 \end{bmatrix}.$$

The 4 sequences of Plücker coordinates are

$$(\Delta_{\{1,2\}}, \Delta_{\{1,3\}}, \Delta_{\{1,4\}}) = (1, 0, 1), \quad (\Delta_{\{1,3\}}, \Delta_{\{2,3\}}, \Delta_{\{3,4\}}) = (0, 1, 1),$$

$$(\Delta_{\{1,2\}}, \Delta_{\{2,3\}}, \Delta_{\{2,4\}}) = (1, -1, 0), \quad (\Delta_{\{1,4\}}, \Delta_{\{2,4\}}, \Delta_{\{3,4\}}) = (1, 0, 1).$$
We say that \(V \in \text{Gr}_{k,n} \) is \textit{totally positive} if \(\Delta_I(V) > 0 \) for all \(I \in \binom{[n]}{k} \).
The totally positive Grassmannian

- We say that $V \in \text{Gr}_{k,n}$ is totally positive if $\Delta_I(V) > 0$ for all $I \in \binom{[n]}{k}$.
- For $x \in \mathbb{R}^n$, let $\overline{\text{var}}(x)$ be the maximum of $\text{var}(y)$ over all $y \in \mathbb{R}^n$ obtained from x by changing zero components of x.
The totally positive Grassmannian

- We say that $V \in \text{Gr}_{k,n}$ is \textit{totally positive} if $\Delta_I(V) > 0$ for all $I \in \binom{[n]}{k}$.
- For $x \in \mathbb{R}^n$, let $\overline{\text{var}}(x)$ be the maximum of $\text{var}(y)$ over all $y \in \mathbb{R}^n$ obtained from x by changing zero components of x.

$$\overline{\text{var}}((1, -4, 0, -3, 6, 0, -1)) = 5$$
The totally positive Grassmannian

- We say that \(V \in \text{Gr}_{k,n} \) is \textit{totally positive} if \(\Delta_I(V) > 0 \) for all \(I \in \binom{[n]}{k} \).
- For \(x \in \mathbb{R}^n \), let \(\overline{\text{var}}(x) \) be the maximum of \(\text{var}(y) \) over all \(y \in \mathbb{R}^n \) obtained from \(x \) by changing zero components of \(x \).

\[
\overline{\text{var}}((1, -4, 0, -3, 6, 0, -1)) = 5
\]

Theorem (Gantmakher, Krein (1950))

\(V \in \text{Gr}_{k,n} \) is totally positive iff \(\overline{\text{var}}(x) \leq k - 1 \) for all nonzero \(x \in V \).
The totally positive Grassmannian

- We say that $V \in \text{Gr}_{k,n}$ is totally positive if $\Delta_I(V) > 0$ for all $I \in \binom{[n]}{k}$.
- For $x \in \mathbb{R}^n$, let $\overline{\text{var}}(x)$ be the maximum of $\text{var}(y)$ over all $y \in \mathbb{R}^n$ obtained from x by changing zero components of x.

$$\overline{\text{var}}((1, -4, 0, -3, 6, 0, -1)) = 5$$

Theorem (Gantmakher, Krein (1950))

$V \in \text{Gr}_{k,n}$ is totally positive iff $\overline{\text{var}}(x) \leq k - 1$ for all nonzero $x \in V$.

Theorem (Karp (2015))

Let $V \in \text{Gr}_{k,n}$ and $m \geq k - 1$. Then $\overline{\text{var}}(x) \leq m$ for all nonzero $x \in V$ iff

$$\overline{\text{var}}((\Delta_{J \cup \{i\}}(V))_{i \notin J}) \leq m - k + 1$$

for all $J \in \binom{[n]}{k - 1}$ such that $\Delta_{J \cup \{i\}}(V) \neq 0$ for some i.

Note that var is increasing while $\overline{\text{var}}$ is decreasing with respect to genericity.
The totally positive Grassmannian

- We say that $V \in \text{Gr}_{k,n}$ is totally positive if $\Delta_I(V) > 0$ for all $I \in \binom{[n]}{k}$.
- For $x \in \mathbb{R}^n$, let $\overline{\text{var}}(x)$ be the maximum of $\text{var}(y)$ over all $y \in \mathbb{R}^n$ obtained from x by changing zero components of x.

$$\overline{\text{var}}((1, -4, 0, -3, 6, 0, -1)) = 5$$

Theorem (Gantmakher, Krein (1950))

$V \in \text{Gr}_{k,n}$ is totally positive iff $\overline{\text{var}}(x) \leq k - 1$ for all nonzero $x \in V$.

Theorem (Karp (2015))

Let $V \in \text{Gr}_{k,n}$ and $m \geq k - 1$. Then $\overline{\text{var}}(x) \leq m$ for all nonzero $x \in V$ iff

$$\overline{\text{var}}((\Delta_J \cup \{i\})(V))_{i \notin J} \leq m - k + 1$$

for all $J \in \binom{[n]}{k-1}$ such that $\Delta_J \cup \{i\}(V) \neq 0$ for some i.

- Note that var is increasing while $\overline{\text{var}}$ is decreasing with respect to genericity.
Oriented matroids

An **oriented matroid** is a combinatorial abstraction of a real subspace, which records the Plücker coordinates up to sign, or equivalently the vectors up to sign.

These results generalize to oriented matroids.
The cell decomposition of $\text{Gr}_{k,n}^{\geq 0}$

Given $V \in \text{Gr}_{k,n}$, define $M(V) := \{ I \in \binom{[n]}{k} : \Delta_I(V) \neq 0 \}$, called the matroid of V. The matroid stratification of $\text{Gr}_{k,n}^{\geq 0}$ is a CW-decomposition.
The cell decomposition of $\text{Gr}_{k,n}^{\geq 0}$

Given $V \in \text{Gr}_{k,n}$, define $M(V) := \{ I \in {[n] \choose k} : \Delta_I(V) \neq 0 \}$, called the matroid of V. The matroid stratification of $\text{Gr}_{k,n}^{\geq 0}$ is a CW-decomposition.

$\text{Gr}_{1,3}^{\geq 0} \cong \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}$
The cell decomposition of $\text{Gr}_{k,n}^{\geq 0}$

Given $V \in \text{Gr}_{k,n}$, define $M(V) := \{ I \in \binom{[n]}{k} : \Delta_I(V) \neq 0 \}$, called the matroid of V. The matroid stratification of $\text{Gr}_{k,n}^{\geq 0}$ is a CW-decomposition.

How can we find the cell of V (i.e. $M(V)$) in $\text{Gr}_{k,n}^{\geq 0}$ using sign patterns?
The cell decomposition of $\text{Gr}_{k,n}^{\geq 0}$

- Given $V \in \text{Gr}_{k,n}$, define $M(V) := \{ I \in \binom{[n]}{k} : \Delta_I(V) \neq 0 \}$, called the matroid of V. The matroid stratification of $\text{Gr}_{k,n}^{\geq 0}$ is a CW-decomposition.

- How can we find the cell of V (i.e. $M(V)$) in $\text{Gr}_{k,n}^{\geq 0}$ using sign patterns?

Exercise

Let $V \in \text{Gr}_{k,n}$ and $I \in \binom{[n]}{k}$. Then $\Delta_I(V) \neq 0$ iff V realizes all 2^k sign patterns in $\{+,-\}^k$ on I.

Steven N. Karp (UC Berkeley)

Sign variation, the Grassmannian, and total positivity

FPSAC 2015
The cell decomposition of $\text{Gr}_{k,n}^{\geq 0}$

- Given $V \in \text{Gr}_{k,n}$, define $M(V) := \{ I \in \binom{[n]}{k} : \Delta_I(V) \neq 0 \}$, called the matroid of V. The matroid stratification of $\text{Gr}_{k,n}^{\geq 0}$ is a CW-decomposition.

- How can we find the cell of V (i.e. $M(V)$) in $\text{Gr}_{k,n}^{\geq 0}$ using sign patterns?

Exercise

Let $V \in \text{Gr}_{k,n}$ and $I \in \binom{[n]}{k}$. Then $\Delta_I(V) \neq 0$ iff V realizes all 2^k sign patterns in $\{+, -\}^k$ on I.

- Moreover, given $\omega \in \{+, -\}^k$, there exists $V \in \text{Gr}_{k,n}$ which realizes all 2^k sign patterns in $\{+, -\}^k$ on I except for $\pm \omega$ (assuming $n > k$).
The cell decomposition of $\text{Gr}_{k,n}^{\geq 0}$

- Given $V \in \text{Gr}_{k,n}$, define $M(V) := \{ I \in \binom{[n]}{k} : \Delta_I(V) \neq 0 \}$, called the matroid of V. The matroid stratification of $\text{Gr}_{k,n}^{\geq 0}$ is a CW-decomposition.

$\text{Gr}_{1,3}^{\geq 0} \cong \{1\}, \{2\}, \{1\}, \{2\}, \{3\}, \{1\}, \{3\}$

- How can we find the cell of V (i.e. $M(V)$) in $\text{Gr}_{k,n}^{\geq 0}$ using sign patterns?

Exercise

Let $V \in \text{Gr}_{k,n}^{\geq 0}$ and $I \in \binom{[n]}{k}$. Then $\Delta_I(V) \neq 0$ iff V realizes all 2^k sign patterns in $\{+,-\}^k$ on I.

Moreover, given $\omega \in \{+,-\}^k$, there exists $V \in \text{Gr}_{k,n}$ which realizes all 2^k sign patterns in $\{+,-\}^k$ on I except for $\pm \omega$ (assuming $n > k$).
The cell decomposition of $\operatorname{Gr}_{k,n}^{\geq 0}$

Given $V \in \operatorname{Gr}_{k,n}$, define $M(V) := \{ I \in \binom{[n]}{k} : \Delta_I(V) \neq 0 \}$, called the \textit{matroid} of V. The \textit{matroid stratification} of $\operatorname{Gr}_{k,n}^{\geq 0}$ is a CW-decomposition.

How can we find the cell of V (i.e. $M(V)$) in $\operatorname{Gr}_{k,n}^{\geq 0}$ using sign patterns?

\textbf{Theorem (Karp (2015))}

Let $V \in \operatorname{Gr}_{k,n}^{\geq 0}$ and $I \in \binom{[n]}{k}$. Then $\Delta_I(V) \neq 0$ iff V realizes the following k sign patterns on I:

$(+, -, +, -, +, -, \cdots), (+, +, -, +, -, +, \cdots), (+, -, -, +, -, +, \cdots), \cdots$.

Moreover, given $\omega \in \{+, -\}^k$, there exists $V \in \operatorname{Gr}_{k,n}$ which realizes all 2^k sign patterns in $\{+, -\}^k$ on I except for $\pm \omega$ (assuming $n > k$).
The cell decomposition of $\text{Gr} \geq 0_{k,n}$

- Given $V \in \text{Gr}_{k,n}$, define $M(V) := \{ I \in \binom{[n]}{k} : \Delta_I(V) \neq 0 \}$, called the matroid of V. The matroid stratification of $\text{Gr} \geq 0_{k,n}$ is a CW-decomposition.

\[\text{Gr} \geq 0_{1,3} \cong \{1\}, \{2\}, \{1\}, \{2\}, \{1\}, \{3\} \]

- How can we find the cell of V (i.e. $M(V)$) in $\text{Gr} \geq 0_{k,n}$ using sign patterns?

Theorem (Karp (2015))

Let $V \in \text{Gr} \geq 0_{k,n}$ and $I \in \binom{[n]}{k}$. Then $\Delta_I(V) \neq 0$ iff V realizes the following k sign patterns on I:

\[(+, -, +, -, +, - ,\ldots), (+, +, -, +, - ,\ldots), (+, -, -, +, - ,\ldots), \ldots. \]

- Compare this to the fact that the matroid stratification of $\text{Gr} \geq 0_{k,n}$ is the refinement of n cyclically shifted Schubert stratifications (vs. all $n!$).
Further directions

- Is there an efficient way to test whether a given $V \in \text{Gr}_k,n$ is totally positive using the data of sign patterns? (For Plücker coordinates, in order to test whether V is totally positive, we only need to check that some particular $k(n - k)$ Plücker coordinates are positive, not all $\binom{n}{k}$.)
- Is there a simple way to index the cell decomposition of $\text{Gr}_{k,n}^{\geq 0}$ using the data of sign patterns?
- Is there a nice stratification of the subset of the Grassmannian
 \[\{ V \in \text{Gr}_k,n : \text{var}(x) \leq m \text{ for all } x \in V \}, \]
 for fixed m? (If $m = k - 1$, this is $\text{Gr}_k,n^{\geq 0}$.)
Further directions

- Is there an efficient way to test whether a given $V \in \text{Gr}_{k,n}$ is totally positive using the data of sign patterns? (For Plücker coordinates, in order to test whether V is totally positive, we only need to check that some particular $k(n - k)$ Plücker coordinates are positive, not all $\binom{n}{k}$.)
- Is there a simple way to index the cell decomposition of $\text{Gr}_{k,n}^{\geq 0}$ using the data of sign patterns?
- Is there a nice stratification of the subset of the Grassmannian
 \[\{ V \in \text{Gr}_{k,n} : \text{var}(x) \leq m \text{ for all } x \in V \}, \]
 for fixed m? (If $m = k - 1$, this is $\text{Gr}_{k,n}^{\geq 0}$.)

Thank you!